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1. INTRODUCTION:

Our objective is to exploit the wealth of physiological, metabolic, morphological and molecular 
sources of optical contrast to develop novel strategies that focus on two breast cancer 
applications: tumor margin assessment and prediction of response to neo-adjuvant therapy. The 
proposed aims of this grant are expected to result in three major contributions. The first has the 
most immediate impact. An optically-based strategy that can quickly and non-destructively 
detect positive tumor margins will decrease the need for re-excision surgery and thereby 
decrease the local recurrence rate and rate of distant metastases in women electing BCS. 
Gaining insight into the physiological, metabolic, morphological and molecular sources of 
heterogeneity within and among tumors and how they are modulated by therapy, drug 
resistance and metastatic potential will directly benefit prognostication, prediction of outcome 
and planning of cancer therapies. With these tools, clinicians and clinical researchers can get a 
better understanding of this disease and how it might react to a drug. Basic science researchers 
could use it as an informed approach to study tumor biology and assay the effect of novel 
therapeutic agents in vivo. 

a. Original Statement of Work for 5 Years

Aim 1: Optical imaging of margin morphology on breast lumpectomy specimens: To 
evaluate the role of wide-field imaging (coverage) and high-resolution interrogation (localization) 
of breast margin morphology to guide surgical resection intra-operatively and pathologic 
assessment of the tumor margin post-operatively (Timeframe: year 1-5). 

1a. Development of one optical spectral imaging system that integrates sensing capabilities 
for aims 1 and 2 and a high-resolution probe that can image absorption, scattering and 
fluorescence contrast (timeframe, year 1). 

1b. Conduct clinical studies on lumpectomy margins on 200 patients (time frame, years 2-4) 

1c. Data analysis and interpretation (timeframe, years 3-5) 

Test the sensitivity and specificity of wide-field imaging to detect positive tumor 
margins 

Test sensitivity and specificity of high-resolution probe to detect IDC and DCIS. 

Aim 2: Optical quantitative biology of different sub-types of breast cancer: To investigate 
biomarkers of oxygenation, carotenoids (β-carotene) and ECM proteins (collagen) in human 
breast cancer stratified by tumor sub-type and receptor status and their association with neo-
adjuvant chemotherapy response. 

2a. Development of rotating needle compatible spectroscopy probe (timeframe, year 1). 

2b.Conduct clinical studies to measure optical biomarkers in vivo in 150 patients undergoing 
surgery (timeframe, years 2-4). 

2c. Conduct clinical studies to measure optical biomarkers from 75 patients before neo-
adjuvant therapy 
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2d. Data analysis and interpretation (years 3-5): 

Determine association of biomarkers with tumor subtype 

Determine association of biomarkers with receptor status 

Determine association of biomarkers with genomic signatures 

Determine association of biomarkers with pathologic sub-total and complete 
response 

Aim 3: Optical quantitative biology to assess therapy response in different sub-types of 
breast cancer: To investigate biomarkers of oxygenation and ECM proteins (collagen and αvβ3 
expression) in rodent breast cancer stratified by tumor sub-type, receptor status and metastatic 
potential in response to targeted and chemotherapies. 

3a. To determine if multi-parametric intra-vital optical microscopy, measuring hemoglobin 
saturation, total hemoglobin, redox ratio, collagen, and integrin expression can monitor 
tumor response to tamoxifen in parental and tamoxifen-resistant MCF-7 tumors in the 
mouse dorsal skin fold window chamber (timeframe, years 1-2). 

! A total of 40 athymic nude mice will be required for this study (10 
mice/group). 

3b. Monitor optical parameters in the dorsal skin fold window chamber in response to 
doxorubicin chemotherapy in MCF-7 parental and doxorubicin-resistant tumors 
(timeframe, years 2-3). 

! A total of 40 athymic nude mice will be required for this study. 

3c. Monitor optical parameters in the dorsal skin fold window chamber in response to 
doxorubicin chemotherapy in tumors that express high (MDA-435) and low (MCF-7) 
levels of αvβ3 integrin (timeframe, years 3-4). 

! A total of 40 athymic nude mice will be required for this study. 

3d.  Data and statistical analysis (timeframe, year 5). 
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3. OVERAL PROJECT SUMMARY:

 Aim 1: Aim 1: Optical imaging of margin morphology on breast lumpectomy specimens: 

Aim 1 seeks to leverage diffuse optical spectroscopy as a tool for rapidly surveying breast tumor 
margins. Specifically, we seek to use a wide-field high-resolution diffuse optical spectroscopy 
device to quantify the likelihood of residual disease at the tumor excision site. Additionally, this 
process must be performed rapidly to afford the surgeon enough time to act on the information. 
Two years ago, we focused on advancing optical imaging for breast margin assessment by 
analyzing excisional time, cautery and patent blue dye on underlying sources of contrast in 
patients undergoing breast conserving surgery. The results of this study informed the 
development of a 49-channel device with a large field of view. An ancillary imaging platform was 
developed to further improve the resolution and reduce random error introduced by the user; 
preliminary data from this optimized system was detailed in last year’s report.  Here we report a 
further optimized system embodiment as well as an analysis of the first subset of patient data 
acquired using the streamlined system. Improvements were made to the light source: the 
thermal source was replaced with a custom 2- channel multi-colored LED system. The high-
power LEDs used afford a tenfold reduction in total acquisition time. Additionally, the acquisition 
software was revised to provide hi-resolution real-time optical property maps: this will aid in the 
designation of specific sites for pathological review and device validation.  

Introduction: 
We have previously demonstrated that wide-field optical imaging of tumor morphology detects 
positive margins (margins with IDC and DCIS) with accuracies that well exceed that of the 
breast surgeon. Here we further refine our understanding of the micro-architectural differences 
between different types of tumor margin sub-types, in particular, DCIS, towards improving 
sensitivity and specificity. Our approach is to image the boundaries of the excised tumor mass, 
which is consistent with the existing paradigm for post-operative pathologic margin assessment, 
using the 49-channel device to acquire wide-field images of the tumor margins.  We have 
previously shown that both radiographic breast density, as well as neoadjuvant status, impact 
the spectroscopic data of the surgical margins and should be considered when assessing the 
margin status. In this work, we investigate the influence of additional system parameters 
afforded by the latest generation wide-field imaging technology, such as sampling resolution 
and optical changes related to the pressure at the tissue-probe interface. Furthermore, we 
present a follow- up study based on empirical cumulative distribution functions (eCDFs) to 
corroborate previous findings now in the context of improved resolution.  Data acquired from the 
first 30 patients using the hi-resolution wide-field system are analyzed and discussed.  
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Part A. Advancing optical imaging for breast margin assessment: (Advancements in 
clinical instrumentation, an analysis of the effects of resolution, applied pressure, and system 
reproducibility, optical property validation of the 49-channel probe) 

Breast conserving surgery (BCS) is a recommended treatment for early-stage breast cancer 
and for breast cancers that have been reduced in size by neoadjuvant therapy.  The goal of 
BCS is to excise the tumor along with a margin of normal tissue, while preserving as much of 
the normal breast tissue as possible.  Unfortunately, as many as 18-72% of patients undergoing 
BCS require repeat surgeries due to a close or positive surgical margin diagnosed post-
operatively and thus, require a re-excision surgery to achieve cancer free margins [1-9].  The 
large variation in re-excisions is thought to be due to differences in surgeon’s training, in the 
definition of a close margin, and in the perceived risk of focally positive margins versus 
extensive involvement [10].  

Surgery to remove the cancer and obtain clear margins is a collaborative effort between the 
surgeon and the pathologist (and in some institutions, the radiologist). In spite of this, there can 
be substantial variability in the prediction of positive margins in the intra-operative and post-
operative settings. Surgeons do not have adequate intra-operative assessment tools to ensure 
that the cancer has been completely removed at the time of first surgery.  Pathologists do not 
have adequate tools for sampling from areas on large tumor margins.  The lack of these 
capabilities represents a significant unmet clinical need for margin assessment for both the 
surgeon and pathologist.     

Optical imaging of tissue is an attractive solution to this problem because it is relatively fast and 
non-destructive.  Optical techniques can also measure features related to the histological 
landscape without the need for labels.  Before this technology can be used in an intra-operative 
setting or in a post-operative setting, systematic studies have to be performed to determine 
which surgical and post-surgical factors affect the precision and accuracy with which this 
technology maps optical contrast. This is true not only for our technology but other technologies, 
both optical and non-optical that are intended for this application.  

In the following section, we review recent technological improvements to the clinical 
instrumentation: we have transitioned to solely using the 49-channel wide-field imaging probe 
described in the previous report, we have developed and integrated a robust pressure-sensitive 
raster-scanning imaging platform, and we have developed an efficient, multiplexed LED-based 
light source. We use this technology to examine the impact of the pressure at the probe-tissue 
interface in the context of false-positive/ false negative rates. Furthermore, we investigate the 
optimal scanning resolution to maximize the likelihood of detecting small regions of focal 
disease with intra-operative time scales in mind.  We establish the optical property extraction 
accuracy of the wide-field 49-channel probe is to demonstrate consistency with previous 
generation devices. The reproducibility of the scanning mechanism is evaluated in a clinical 
context; repeated scans of non-diseased breast tissue are acquired in series and post 
operatively compared for spatial co-registration.  

Methods: 
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Clinical Instrumentation 

The latest generation clinical system consists of  a desktop computer (Dell, INC, Plano, TX) 
custom dual-channel high-power LED source (in-house), a thermo-electrically cooled CCD and 
spectrograph (Andor, Oxford Instruments,PLC,Abingdon, UK), a custom raster-scanning 
imaging platform (in-house), and a custom 49-channel multiplexed fiber-optic probe (Zenalux 
Biomedical©, RTP, NC). A diagram of the system is shown in figure 1.1. The imaging probe 
consists of a 7x7 grid of fiber-optic channels spaced 6mm apart, each comprised of 8 
illumination fibers surrounding a single detection fiber (NA = .22, d = 200µm). The effective 
coverage area is 17cm2.The source-detector separation for each channel is 700µm. The 
illumination fibers for each of 49 channels are collected and subsequently bifurcated into even 
and odd illumination bundles such the odd and even channels of the probe can be illuminated 
independently. A sequential illumination pattern of the odd and even channels is used to reduce 
inter-pixel crosstalk. 

Figure 1.1 Probe Detail. Each of the 49 channels consists of a single detection fiber and 8 
illumination fibers. Illumination fibers are collected and bifurcated into two fiber bundles (OC and 
EC) corresponding to odd (red) and even channels (blue). The 49 detection fibers are ordered in 
a linear array and imaged onto the CCD and spectrograph (collection bundle).. 
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A custom raster-scanning imaging platform was developed to improve the sampling 
resolution of the 49-channel device in a controlled fashion. This is achieved by incrementally 
translating the probe in both lateral directions using precision stepping motors and subsequently 
translating the probe downward to establish contact with the specimen, which is placed atop a 
base with pressure sensors that are continuously polled by the acquisition algorithm. In total, the 
imaging platform consists of a pressure sensitive base utilizing 4 discrete force sensors, a 
mechanism to physically hold the probe, and a custom computer controlled XYZ scanning 
mechanism. The scanning mechanism can reproducibly (within 1%) move the probe in each 
direction in increments of 10µm or greater at a rate of .5s/mm; providing an avenue to raster-
scan samples on intra-operative time scales. A cartoon of this system setup is observed in 
figure 1.2. 

Figure 1.2 System Overview. The custom imaging platform, spectrometer, and dual channel 
LED source are each interfaced to the computer via USB. Located just below the probe is a 
pressure sensitive base on which the specimen is placed just prior to the initiation of the raster-
scanning sequence. Channels 1 and 2 of the LED source illuminate the odd and even channels 
in sequence, respectively.  Diffuse reflectance data is collected for each of the 49 channels 
during both scans. 

A dual-channel LED source was developed to reduce total acquisition time and to 
increase the light source efficiency. Previously, a Xenon thermal source was used alongside a 
mechanical optical switch requiring a minimum of 5 seconds to toggle between channels. The 
new, improved source consists of two identical LED modules; each module contains two cool-
white high-power LEDs (CREE, INC, XP-G2, Durham, NC), a green LED (λc = 510nm), and a 
blue LED (λc=470nm)(Luxeon Star LEDs, USA). These four discrete LEDs were chosen to 
provide near-spectrally flat white light, an option currently not available using a single 
commercial LED. The improvement in speed is realized by the fact that these modules need 
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only be toggled off/on, avoiding the 5 second delay required by the mechanical switch. 
Furthermore, the LED modules improve the SNR of the system by eliminating the highly 
variable thermal source (7-15% variation). An improvement in efficiency is also realized due to 
both the higher efficiency of LEDs and the pulse-like use of the LEDs (the thermal source must 
remain on continuously for stability). Each of the 4 discrete LEDs in each module are coupled to 
a respective illumination bundles using a hexagonal polycarbonate concentrating lens (Polymer 
Optics, LTD, UK). The first segment of each illumination bundle consists of a liquid light guide 
which serves to uniformly spatially distribute the light from each of the 4 LEDs. A microcontroller 
based mechanical relay control unit is used to interface the computer and selectively power 
each LED; power toggling eliminates the possibility of stray light influence from opposing 
channels. The reproducibility of light intensity for this source was determined by acquiring 25 
sequential measures using the 99% reflectance target at 10 separate integration times 
corresponding to dynamic range of the CCD. The maximum variation observed was less than 
2%. 

Figure 1.3 LED-Based light source a) Digital photo showing color output before mixing. b) 
Mixed spectral output from 400-630nm. c) LED system with boxed regions to illustrate the 
illumination bundle/ mixer interfaces.  
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Effects of Pressure and Resolution Enhancements 

Raster-scanning resolution was established using a printed 1951 USAF resolution target 
placed atop a Spectralon target and a pliable scattering medium. The target was then measured 
as a function of upsample factor, hereafter referred to as (n); which is a measure corresponding 
to the number of evenly spaced locations between neighboring pixels. For example, an n = 6 
would correspond to 36 (n2) placements of the entire probe in increments of 1mm (6 
measurements between 6mm spaced channels) in both the x and y directions. Each of the two 
samples were measured at n = 10, 8, 5, 4, 3, 1.  

To determine the effects of pressure, we developed a layered meat model to simulate a margin-
like structure. The top layer is comprised of half fat and half smooth muscle the lower layer a 
highly absorbing red meat, some fat is present. We placed the thin layers (bacon) on top of the 
meat, as illustrated in the cartoon in figure 1.4. The probe was oriented such that half of the 
pixels correspond to the muscle half of the top layer, while the other half was used to survey the 
fatty (scattering) region. We repeated this experiment for two margin thicknesses, 2 an 4mm, 
achieved by stacking multiple top layer samples.  

Figure 1.4 Pressure testing assay. Two margin thicknesses are simulated using meat 
samples with a well-defined thickness. A high-absorption thick layer rests beneath a half-
scattering half-absorbing layer and serves as a source high contrast to reveal compression of 
the top layer.  

Diffuse reflectance was recorded over a range of applied pressures in 2mmHg increments up to 
16mmHg. These spectra were then inverted to obtain the constituent optical properties relevant 
to the samples, in this case the concentration of hemoglobin (from the absorption coefficient) 
and the reduced scattering coefficient, µs’. 

Optical Property Extraction Validation 
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Tissue simulating phantoms were constructed to determine the optical property extraction 
accuracy of the scaled Monte-Carlo reference simulation modeled for the device geometry. The 
phantom study was designed according the methods and protocol vetted by Bender et al[11] 
and Palmer et al[12, 13]. Tissue scattering and absorption were simulated using 1µm 
polystyrene microspheres (Polysciences, INC) and isolated ferrous hemoglobin (Sigma-Aldrich, 
INC), respectively. A total of 12 phantoms were constructed: concentrated hemoglobin was 
added in increasing volume 11 times to a base non-absorbing phantom with average µs’ = 9.2 
cm-1 (λ = 420-630nm), resulting in average µa values ranging 0 to 15 cm-1. Ten repeated diffuse 
reflectance spectra were collected for all channels for each of these 12 phantoms (1 non-
absorbing, 11 absorbing). The mass of each constituent was measured and recorded at each 
step of the phantom fabrication process to reduce systematic and random error associated with 
pipetting and changes in density caused by temperature fluctuations. Likewise, the phantoms 
were thoroughly mixed just prior to being measured to reduce the effects of solution settling.  

The inverse Monte-Carlo model previously developed by our lab was used to invert 
diffuse reflectance spectra to constituent optical properties (µa and µs’)[11-13]. Briefly, the 
Monte-Carlo model utilizes a non-linear least squares fitting routine to best match a corrected 
reflectance spectrum to a Monte-Carlo generated reflectance look-up table generated based on 
the source-collection geometry and optical characteristics. Reflectance spectra are scaled by 
calibrating to a reference phantom with known optical properties; this, alongside a Spectralon 
measurement to account for the wavelength dependent source intensity, account for the entire 
system-specific response. A leave-one-out cross validation analysis was performed using each 
of the 12 aforementioned tissue simulating phantoms wherein each phantom was tested as a 
reference phantom against the remaining 11. Extracted values for µa and µs’ were analyzed as 
percent error relative to the expected values for each phantom/reference phantom combination.  

Results: 
The optimal raster-scanning upsample factor was determined to be 8: a full scan of a single 
margin can be acquired in less than 15 minutes (12.8mins) at a resolution better than 1mm 
(.75mm). Figure 1.5 illustrates the tradeoff between resolution and time and additionally 
provides a meat-based example to demonstrate the clear benefit of sub-pixel sampling. 
Considering breast tumor margin assessment, resolution greater than 1mm is warranted to 
increase the probability of detection of focal disease. Small regions of focal disease are 
particularly important to discover as standard of care stipulates that partial mastectomy 
specimens be sliced at 5mm increments for histological preparation.   
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Figure 1.5 Raster-scanning Metrics. a) The tradeoff between resolution and time as a function 
of upsample factor for n = 1, 2, 3, 4, 5, and 10. Scanned images are average reflectance values 
(405-630nm) measured on a resolution target (USAF 1951) with a diffuse background. b) Digital 
image of a meat sample with well-defined predominantly scattering and absorbing regions. c) A 
single diffuse reflectance acquisition averaged over 405-630nm. d) A raster-scanned image of 
the meat sample taken at an upsample rate of 5. 

No significant difference was found for resolution target measurements taken with a diffusive 
(scattering) medium as the background compared to those taken with the Spectralon target as 
the background medium. As observed in figure 1.5, the improvement in resolution additionally 
provides well-defined structural information for optical property and spatial co-registration, which 
is useful when comparing parameter maps to actual digital images.  

The effects of pressure are well demonstrated using previously described meat model to 
simulate a margin-like sample. Figure 1.6 indicates that for the 2mm margin, there is a narrow 
pressure window in which the extracted optical parameters are valid. The change between 5 
and 10mmHg represents the point at which contact is established, and the change between 10 
and 15mmHg represents the point at which the margin is compressed enough that you begin to 
sense the high-absorbtion layer, in this case red steak, causing the reduced scattering 
coefficient to be diminished. These changes are not as obvious in the absorbing region of the 
top layer due to the inherent absorption of the top layer; however, there is still a marked 
increase in measure [Hb] beyond 15mmHg, suggesting that the highly absorbing bottom layer 
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can still be detected in the presence of absorption in the top layer. The effects of compression 
are not realized in the thicker top layer specimen within the range of pressure investigated.  

Figure 1.6. Effects of pressure. a) Changes in the reduced scattering coefficient as a function 
of pressure and b) the corresponding changes in the absorption coefficient.  

The optical property extraction accuracy was determined to be within 8% of the expected values 
for µs’ and µa for the entire span of phantoms measured. Figure 1.7 illustrates optical property 
extraction accuracy by displaying extracted values as a function of the expected values.  

Figure 1.7. Expected vs. Extracted Optical Properties. Scatter plots of the known versus the 
measured values of µa (a) and µs’ (b) for the phantom study set. The diagonal line indicates 
perfect agreement.  

We have previously established error within 10% as acceptable for clinical use as statistically 
significant differences can be realized within this range[14]. The 49-channel wide-field probe is 
thus equivalently or better suited for clinical use.  

Part B. Clinical Study on Margin Assessment: 
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In previous reports, we saw a substantial proportion of margins (1.5 on average) that presented 
as positive under pathological review. At Duke University Medical Center (DUMC) the treatment 
paradigm has significantly changed in the last two years and that number has substantially 
decreased. The complications associated with small, focal regions of cancerous cells at the 
margin edge however, remain. Moreover, these regions of positivity are unlikely to be 
discovered within the current clinical framework; pathologists typically sample lumpectomy 
specimens at 3-5mm intervals for histopathological review, leaving a substantial risk for these 
small regions to go undetected. The challenge for any intra-operative technique for breast tumor 
margin assessment is the ability to detect the signal (i.e., the histologic changes due to varying 
amounts of malignancy at the margin) over the noise (i.e., the normal inter-patient and intra-
patient variation in breast composition). If we view the range of normal tissues in the breast as a 
‘‘landscape,’’ then the challenge in margin assessment is to detect the presence of malignant 
tissue at the boundary of an otherwise ‘‘normal’’ margin, as a perturbation in that landscape. 
The clinical challenges thus warrant a device capable of both a wide coverage area as well (to 
survey the entire margin) and small feature recognition (to avoid missing focal regions of 
cancer).  

We previously reported on our first generation 49channel+scanning platform device to 
address the under-sampling/coverage obstacles, wherein optical parameter maps where shown 
for an oversampled positive and negative margin. As described in the previous section, the 
technology has extensively matured with the capability extended to automatic digital images, 
precise automatic positioning, enhanced load bearing, and optimized pressure sensing. The 
goal of these enhancements was to further reduce systematic and user error, improve the 
acquisition speed and thereby sampling resolution, and to understand the effects of resolution 
on the ability to detect small regions of disease. In this section, we present a quantitative 
analysis of the hyperspectral image landscapes collected using this high-resolution device on a 
cohort of 30 patients.  

Methods: 

Patient Data Collection 

Diffuse reflectance spectra were collected from excised breast tissue specimens from 30 
patients. For the purposes of this work, patients undergoing breast conserving therapy (BCT) as 
well as breast reduction surgery were recruited. Specimens (partial mastectomies and reduction 
mammoplasties) from the respective patient populations were used to compare the optical 
property values corresponding to dysplastic tissue (partial mastectomy specimens with a 
positive or close margin), normal tissue (reduction mammoplasty specimens without dysplasia), 
and additionally normal tissue in the presence of dysplasia (partial mastectomy specimens with 
negative margins). Partial mastectomy specimen orientation was determined according to 
surgically placed reference features including: a surgical wire inserted into the center of the 
tumor, colored sutures, and surgical clips. Specimen faces were defined as the faces of a cube 
and labeled relative to the specimen orientation in situ; the six measureable faces are hereafter 
referred to as the superior, inferior, posterior, anterior, medial, or lateral margin.  Reduction 
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mammoplasty specimens do not have such a reference system as they are typically not sent to 
post-operative pathology for assessment.  

Immediately following the tissue resection, partial mastectomy specimens are sent to 
radiology for an intra-operative x-ray examination to verify successful removal of the intended 
tissue. Upon return, the specimen is then placed onto the pressure sensing base of the imaging 
platform and oriented accordingly. The raster-scanning procedure is initiated and diffuse 
reflectance spectra are collected across the visible spectrum (400-700nm). The pressure 
applied to the face of the specimen is dynamically controlled by a feedback loop that executes 
in parallel to the main acquisition software, such that subtle adjustments to the applied pressure 
can be made without interrupting spectrum collection. The specimen is then flipped to its 
opposing margin and the scan is initiated a second time. Once scanning is complete, a “site-
level” inking procedure is performed wherein 6- 10 sites are marked using tattoo ink  (typically 
orange in color) with the aid of a co-registration structure that physically relays the central 
location of each channel to specimen. The co-registration plate is then removed and the four 
corners of the margin are then marked with a different color ink (typically green). A certified 
pathologist uses these inked dots to provide site-level (orange dots) and gross margin level 
(green dots) histopathological correlation to the collected spectral channel data. Margin inking 
was followed by the acquisition of a digital image using an on-board digital camera mounted to 
the imaging platform. 

Clinical Data Processing 

Partial mastectomy specimens were measured on the posterior or anterior margins: the 
pancake-like shape of the excised tissue limited measurements to only two margins. The 
measurement order is determined ad hoc as it is not possible to measure a margin multiple 
times due to time restrictions, nor is it possible to know with certainty the margin that has the 
highest likelihood of positivity. A single margin was inked for post-operative pathological 
assessment in a uniformly spaced diamond pattern. Over the next year, sites will be inked 
according to the likelihood of being cancerous as designated by our discriminatory algorithm. 
For this patient data set, tissue optical property maps were reconstructed post-operatively using 
the inverse Monte-Carlo model discussed previously.  

A dual arm cumulative distribution function (CDF) analysis was performed at the margin 
level, including all measured samples, and at the site-level, where parameter values 
corresponded only to regions marked for histological validation. The ability of our spectral 
mapping technique to survey shifts in of the morphological features of the normal breast was 
determined by analyzing the spectral information arising from inter-patient variations in 
mammographic breast density (MBD), which further established the morphological features to 
which the hyperspectral maps are sensitive. A two-sided Kolmogorov-Smirnov statistic p-value 
was used to determine if tissue-specific optical parameter distributions were from a common 
parent distribution, effectively summarizing our ability to categorically discern tissue subtypes. A 
conditional inference tree model (CIT) previously reported by our group [15] was used to further 
stratify tissue margins high and low breast density subgroups (HBD and LBD, respectively).  

Patient Population 
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The following characteristics were recorded for each patient (if available): radiographic breast 
density, menopausal status, neoadjuvant treatment status (chemotherapy or endocrine 
therapy), age, body mass index (BMI), and surgical re-excision status. For the analyses 
presented herein, data was only included from patients who had not undergone prior radiation, 
adjuvant treatment, or surgery 1) due to limited sample sizes and 2) in order to assess 
differences in surgical margin status without these additional confounding factors. For 
mammographic breast density (MBD), each patient was assigned a value based on their pre-
surgery mammogram: 1 (fatty), 2 (scattered fibrous), 3 (heterogeneously dense), or 4 
(extremely dense). For the analyses in this paper an MBD score of 1 or 2 was considered to be 
low density, while a score of 3 or 4 was considered to be high density; the data was binned this 
way since the majority of the patients had 2’s or 3’s. 

Results: 

Clinical Imaging 

Clinical raster-scanned images were acquired for 30 patients at an upsample rate of 8, resulting 
in 64 full frame spectral images (3136 full spectrum pixels) for each margin measured. A 
representative case is shown in figure 1.8. Average collection time for each margin image was 
~12minutes; a few minutes are needed for the inking procedure. Of the 6 possible margins, 2 
were measured (anterior/posterior) in most cases due to the pancake-like shape of most 
specimens.  

Figure 1.8 Representative clinical hi-resolution image. a) Digital photo showing inked sites. 
b) Raster-scanned reflectance image averaged from 430-630nm. c) Upsampled optical property
map of [β-carotene]/µs’. Sites labeled 1-6 (b) mostly contain fat, sites 7-10 are mostly fibro-
glandular tissue.  

The ratio of [β-carotene]/µs’ has previously been established by our group as the most valuable 
diagnostic parameter. In figure 1.8, the fibroglandular features are readily seen in the lower right 
of the [β-carotene]/µs’ parameter map. Note that this region is also observed in the digital image 
taken with a webcam.  
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The utility of resolution enhancement is further demonstrated in a clinical context in figure 1.9. 
Moving from left to right and top to bottom, it is clear that optically relevant features are 
substantially obscured in the lesser upsampled images, as well as the native 49-channel probe 
image. This is important in the context of small regions of focal disease; cancerous features 
may not be discernable when volume averaging using the native 6mm probe resolution.  

Figure 1.9 Representative downsampled images. The top left frame represents the 
interpolated (50x bi-cubic) parameter map of the native probe. Moving from left to right and top 
to bottom, the upsample rate increases from 1- 8. The final image is comprised of 64 separate 
full frame parameter maps.  

Data Analysis 

The relationship between optical parameters and benign breast tissue composition has been 
well established by our group in prior publications [15, 16]. Briefly, it has been determined that 
the ratio of [β-carotene] to <µs’> decreases as the tissue changes from predominantly adipose 
tissue to predominantly fibroglandular tissue components. This manifests as a left shift of the 
empirical CDF corresponding to all pixels with a given [β-carotene] /<µs’> parameter map. 
Furthermore, the ability to quantify and distinguish these changes is greatly enhanced the 
patient population is stratified by breast density.  In this study, we sought to replicate these 
results using a 30 patient cohort of benign tissue margins. Positive margins were not considered 
due to the extremely low incidence of positive margins currently seen at DUMC. Figure 1.10 
shows representative HBD and LBD samples as well as the corresponding eCDFs.  
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Figure 1.10 Optical differences in benign breast tissue associated with density. From left 
to right, a full margin image (map of [β-carotene]/µs’) of a low breast density sample, a full 
margin image of a high breast density sample, and the corresponding cumulative distribution 
functions.   

The lower [β-carotene]/µs’ values can be explained by the proportions of tissue typical to these 
breast density grades. Low density breasts are likely to have higher proportions of fatty tissue 
and therefore present with a naturally higher β-carotene concentration (thereby increasing the 
ratio). Likewise, high density breasts have higher proportions of collagen and glandular tissue, 
which manifests as an increase in the scattering signal. These effects are well summarized by 
the directional shift of the eCDFs: fatty tissue associated with the LBD margin has shifted the 
curve to right, fibrous tissue has shifted curve corresponding to the HBD margin to the left. 
Figure 1.11 shows the eCDF trends for the entire patient cohort.  
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Figure 1.11 Combined CDFs for all low and high breast density samples. Empirical 
cumulative distribution functions (eCDFs) of all margin level data for all high and low breast 
density samples.  

The Kolmogorov-Smirnov (KS) test was used to determine if these distributions are statistically 
likely to originate from a common underlying distribution. The KS test considers both the shape 
and size differences when comparing distributions, and is often used in the context of CDFs to 
quantify the distance between an empirical and a cumulative distribution function and can be 
considered a goodness of fit. HBD and LBD margins were found to be statistically different 
(p<.02) at the margin level for the cohort used in this analysis.  

We performed a similar analysis at the site level using all available pathology-confirmed 
sites from the same patient data set. Site designations with n<5 were excluded from this 
analysis due to insufficient statistical power. Of the 128 selected sites, 71 were primarily 
composed of fat (labeled adipose), 5 were a mixture of fibrous tissue and fat tissue 
(fibroadipose), 9 were a mixture fibrous and glandular tissue (fibroglandular), 31 were a mixture 
of fat and fibroglandular tissue, 6 sites included regions of DCIS 1-3mm from the margin 
surface, similarly 6 sites included some invasive carcinoma .1 to 3mm from the surface. We 
chose to augment our analysis of site-specific distribution dependencies by also investigating 
how these change when lower/higher resolutions are used. Figure 1.12 shows the site level 
CDFs for each of these tissue compositions at the highest and lowest resolution used in this 
study (.9mm/6mm). 

Figure 1.12 eCDFs for all site-level data. Empirical cumulative distributions for eligible 
pathology confirmed tissue sites. a) corresponds to distributions taken with the highest 
upsample (n=8) and correspond to the best resolution (.9mm) and, b) represents the 
corresponding distributions measured using the native probe resolution (6mm).  
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Not surprisingly we discovered that as the adipose content is increased, the CDF tends to shift 
to the right. At the highest resolution used, each of these tissue subtypes are statistically distinct 
from one another, with the exception of fibroglandular and “carcinoma” tissues (p>.0001). 
Interestingly, adipose tissues are statistically different from fibroadipose tissues at the highest 
upsample (p<.0001) but not at the lowest, suggesting that the signal from fibrous components 
are washed out at low resolution. Similarly, fibroglandular tissue is no longer distinguishable 
from the fibroglandular/adipose mix as you decrease in resolution. The inability to distinguish 
pure fat from other tissue types suggests that sub-pixel sampling is imperative to accurately 
diagnose the margin landscape moving forward 

Plans for year 6: In year 6, we will primarily focus on patient accrual and the development of 
the diagnostic algorithm in the context of our hi-resolution device. We will build on our current 
CIT model to optimally separate tissue subtypes and to select sites chosen for pathological 
validation.  

Aim 2: Optical quantitative biology of different breast cancer subtypes. 

Part A – Duke University 

The objective of the work in Aim 2 is to use optical techniques to measure markers of the tumor 
microenvironment in women with cancers representing a wide variety of subtypes, and to 
determine whether these optical measures can be used for real time diagnosis or to predict 
eventual chemotherapy response in a subset of the patients who are measured prior to 
commencement of chemotherapy.  One such approach that we have discussed in previous 
years is to use a high resolution microendoscope (HRME) combined with a morphological stain 
called acriflavine to visualize the tissue morphology in real time. In previous years we 
demonstrated the feasibility of using the HRME for detection of residual carcinoma in the normal 
tissue milieu and validated our unique image analysis approach on preclinical murine tumor 
margin specimens and small cohort of clinical mastectomy samples. We also completed a large 
study using the HRME to capture morphologically based information from biopsy specimens. 
Here we focus primarily on our quantitative approach for diagnosing HRME images of 
heterogeneous breast tissue acquired from biopsy specimens. In Year 5, we continued to image 
biopsy specimens, have identified several quantitative endpoints to distinguish malignant from 
benign tissues, and have built an initial diagnostic classification model.  

Microscopy is a powerful technique that can provide visualization of tissue morphology at the 
point of care.  Various microscopy techniques including reflectance and fluorescence [17-21], 
confocal [22-26], and optical coherence tomography [27-32] have been used to visualize micro-
anatomic tissues at the point of care, much like what a pathologist visualizes when looking at 
tissue sections. Previously, our group used a high resolution fluorescence microendoscope in 
combination with a topical contrast agent called acriflavine to enable visualization of the 
microanatomical features in resected tumor surgical margins [33]. This study was carried out 
using genetically engineered mice with conditional mutations in p53 and either K-ras or B-raf 
after they developed primary sarcomas [34, 35]. A primary sarcoma model was chosen because 
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it more closely mimics the tumor invasion into adjacent skeletal muscle found in human 
sarcomas as compared to xenograft models. We developed a strategy for isolating nuclei from 
the heterogeneous sarcoma margins, using a technique called sparse decomposition (SD) [33], 
which has been used in the image processing community for image compression, 
enhancement, and restoration. The SD image processing algorithm was first optimized through 
using simulations of mouse tumor, muscle, adipose, and tumor + muscle tissues and then using 
tested on images of excised sarcoma margins in mice [33]. SD accurately isolated nuclei from 
images of tumor, muscle, adipose, and tumor + muscle tissue types and differences in both 
nuclear density and size could be leveraged to identify pathologically confirmed positive tumor 
margins as verified with pathology [33]. 

The goal of our current study was to test the robustness of our quantitative microscopy tool box 
to detect the presence of malignancy in breast biopsies.  A logistic regression model optimized 
on individual pure images for which we had a corresponding pathology diagnosis was validated 
on an independent testing set and then prospectively applied to the panel of images obtained 
from the breast biopsies. The sensitivity and specificity of site level imaging for differentiating 
positive from negative images was 100% and 84%. When applied prospectively to biopsy 
mosaics the sensitivity and specificity was 73% and 65%, respectively. These results indicate a 
robust approach for the detection of microscopic disease. This method is particularly well suited 
for applications to different organ sites given that (1) it leverages the micro-anatomical changes 
in pathological tissue and (2) it can be applied to highly heterogeneous tissues consisting of 
multiple tissue types.  

Methods: 

Imaging system and contrast agent: A high resolution fluorescence microendoscope that has 
been described previously [36] was used to capture images of sarcoma margins. Briefly, the 
microendoscope contained a 455 nm light emitting diode, excitation filter, dichroic mirror, 10x 
objective, emission filter, and CCD camera. The light was directed to the sample through a 
flexible fiber bundle composed of 30,000 fibers that yielded a circular field of view of 
approximately 750 µm in diameter. The resolution of the system was approximately 4.4 µm. The 
system was optimized to be used for use with a contrast agent called acriflavine, which 
reversibly associates with nucleic acids, such as RNA and DNA, and has also been shown to 
stain muscle fibers and collagen [37, 38]. Acriflavine was dissolved in phosphate buffered saline 
solution (0.01% w/v, Sigma-Aldrich) and was topically applied to the tissue immediately before 
placing the fiber bundle in contact with the tissue and acquiring images. 

Imaging protocol: Patients undergoing a biopsy procedure at Duke University were consented. 
After the biopsy was removed from the patient, acriflavine was applied to the surface of the 
specimen. The distal end of the HRME fiber bundle was placed in contact with the tissue and 
images were acquired. The biopsy was scanned length-wise by systematically moving the probe 
in 1 mm increments over the tissue surface. Once one side was scanned, the biopsy was 
rotated 180 degrees and the length-wise scanning process was repeated. In order to improve 
the accuracy and reproducibility of these movements the fiber bundle was secured in a custom 
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probe holder fiber chuck which was mounted on an x-y translation stage. Between each probe 
placement the distal end of the probe was cleaned with 55% ethanol.   

Pathologic co-registration: After the imaging session the surface of the specimen was inked for 
pathologic co-registration. In order to maintain the proper orientation of the specimen for 
pathological evaluation, each end was inked with a different color. After imaging and inking was 
complete, the tissue was returned for standard pathologic processing, and the resulting 
hematoxylin and eosin (H&E) stained slides were reviewed by an expert oncology pathologist 
who was blinded to the results of HRME imaging. A diagnosis for each end of the biopsy as well 
as a diagnosis for the middle portion of the biopsy was given.   

Sparse decomposition (SD) for nuclei segmentation: All image processing and analysis was 
completed in MATLAB (2013b, Mathworks Inc., Natick, MA). Images were cropped in order to 
discard the rim of the fiber bundle. Additionally, a low pass Gaussian filter was applied to 
remove the fiber core pattern that was superimposed onto the images. Next nuclei were 
segmented through applying a technique called sparse decomposition (SD), which has been 
described previously [33]. Briefly, SD is a computational technique that leverages the 
morphological information present in the fluorescent images of acriflavine stained microanatomy 
and separates distinct structures into mathematically discrete components. SD was used here 
to separate nuclei from muscle and adipose structures in heterogeneous images. The key 
assumptions were that (1) each tissue type has a different dictionary in which it can be 
represented sparsely and (2) if the dictionaries are dissimilar enough, then sparsity can be used 
to separate the different tissue components.  For example, the spatial (or pixel) dictionary was 
used to capture nuclei because nuclei are small and spatially sparse. The discrete cosine 
transform (DCT) dictionary, which is a variant of the Fourier transform, was used to capture 
fibrous components because fibrous tissue is characterized by periodic fibers. Lastly, the 
curvelet dictionary was used to capture the outlines of adipose cells because adipose cells are 
characterized by smooth localized curves [39].  

After SD was applied to isolate nuclei, variables such as the nuclear size and density were 
quantified by computing the circle transform [40] (CT) to detect approximately circular objects 
(i.e. nuclei). CT was chosen to quantify nuclear variables because it can distinguish overlapping 
circular nuclei and is easy to tune.  

Calculation of nuclear variables: Nuclear variables were designed to capture features that 
pathologists typically use to distinguish between normal and diseased tissue. Diseased features 
typically include increased nuclear density or clusters of nuclei and pleomorphism (the variation 
in size and shape of nuclei) [41, 42]. Specifically nuclear variables include nuclear density 
(abbreviated as density), which is the number of nuclei in a specified area, and nuclear diameter 
(abbreviated as diameter), which is defined as the diameter given by the output of CT. 

Model development with site level data set: In order to develop a model to distinguish between 
positive and negative biopsies, a site level data set was used to examine trends corresponding 
to the pathology diagnosis, which was obtained for each individual image. Specifically, the 
images that are located at the ends of each biopsy (for which we have an approximate image 
level pathology diagnosis) were examined in order to establish expected trends in nuclear 
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diameter and density. Images were reviewed for quality control. Images were removed from the 
data set if there was little to no acriflavine staining present, the image was out of focus, or an 
artifact, such as a large bubble obscured the image. Additionally benign images from malignant 
biopsies were removed in order to ensure that benign images in this data set truly only 
contained benign pathologies. Lastly, in order to assemble a cohort of pure adipose images, 
images that were considered adipose, but clearly contained other tissue types, were removed 
from the data set.  

A univariate and multivariate analysis was completed carried out in which all variables were 
initially considered for the site level data set. Logistic regression models were built in SAS 
software using the PROC LOGISTIC statement. The data set was randomly divided into training 
and testing sets in order to evaluate the performance of the models.  For each model, receiver 
operator characteristic (ROC) curves were constructed for both the training and testing sets 
using a web-based tool. The area under the curve (AUC) associated with each ROC curve was 
determined and tabulated.  

Application of optimized models to the biopsy level data set: The models developed using the 
site level data set were directly applied to the biopsy mosaics. The probability that each image 
was malignant was determined and the distributions of probability values are shown in the 
results section as cumulative distribution functions (cdfs). An optimal observation point for 
distinguishing between malignant and benign biopsies was chosen based on what value yielded 
the most significant differences between malignant and benign sites from the site level data set. 
The model that yielded the highest AUC for the biopsy data set was selected and used to 
examine which biopsies were correctly and incorrectly classified. A cut point on the ROC curve 
was selected based on the quantity F = (1-sensitivity)2+(1-specificity)2, which is minimized at the 
optimal cut point. 

Results: 
 
Demographic information: The breakdown of biopsies specimens imaged in this study is shown 
in Table 2.1. A total of 53 patients are included in this analysis. The demographic information, 
such as age, BMI, receptor status, menopausal status, and breast density are included in Table 
2.1 in addition to the primary histology diagnosis. Of the 53 biopsies, 22 were malignant and 31 
were benign specimens. The 22 malignant are comprised of 17 invasive ductal carcinomas 
(IDC), 2 invasive lobular carcinomas (ILC), 3 ductal carcinomas in situ (DCIS). Of the 31 benign 
biopsies, 6 contained primarily adipose or fibroadipose (FA) tissue, 19 contained primarily 
fibroglandular, fibrous, or glandular tissue, and 6 were either fibroadenomas or papillomas.  

Table 2.1. Patient Demographics 
Characteristic Biopsies 
# of patients 53 
Avg. age (range) 53.6 (19 - 84) 
Avg. BMI (range) 32.3 (17.6 – 61.7) 
Tumor receptor status  
ER +, - 16 (72.7%), 5 (22.7%) 
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PR +, - 15 (68.2%), 6 (27.3%) 
HER-2/neu +/- 10 (52.6%), 9 (47.4%) 
Triple negative 4 (21.1%) 
Primary histology 
Malignant 22 (41.5%) 
     Invasive ductal carcinoma (IDC) 17 (32.1%) 
     Invasive lobular carcinoma (ILC) 2 (3.8%) 
     Ductal carcinoma in situ (DCIS) 3 (5.7%) 
Benign 31 (58.5%) 
     Adipose, fibroadipose 6 (11.3%) 
     Fibroglandular, fibrous, glandular 19 (35.9%) 
     Fibroadenoma, papilloma 6 (11.3%) 
Menopausal Status 
Pre 18 (34%) 
Peri 1 (1.9%) 
Post 34 (64.2%) 
Breast density 
1 1 (1.9%) 
2 16 (30.2%) 
3 25 (47.2%) 
4 5 (9.4%) 

Site level analysis: Representative images taken from the site level data set are shown in Figure 
2.1 A. For the overlay, nuclei that were larger than 7 µm in diameter were false colored red and 
nuclei that were less than or equal to 7 µm in diameter were false colored green. The threshold 
of ‘7 µm’ was chosen because two distinct populations in nuclear diameter were observed 
previous studies [33]. 

Figure 2.1. Application of sparse decomposition (SD) and circle transform (CT) to 
representative images taken from the site level data set. The original images were analyzed 
using SD, and nuclei were subsequently quantified with CT. An overlay is shown in A in which 
the smaller nuclei (<7 µm diameter) are false colored green and the larger nuclei (≥7 µm 
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diameter) are false colored red. Images of the corresponding H&E site are shown in B. Scale 
bar is 200 µm. 
 
Figure 2.2 A, B, and C shows boxplots of density for all nuclei, as well as the smaller nuclei 
(green), and larger nuclei (red). As expected, each density boxplot shows higher densities for 
the malignant compared to the benign tissue types. The density of the smaller nuclei (green) 
yields the most significant differences between malignant and benign images (p = 0.000016). A 
scatterplot of the density of the larger nuclei (red) versus the density of the smaller nuclei (green 
shown in D illustrates that the density of the smaller nuclei (green) leads to more separation 
between malignant and benign sites. No significant differences in average diameter were seen 
between malignant and benign images (p = 0.54, data not shown); therefore, diameter was not 
included in subsequent analysis.  
 

 
Figure 2.2. Variables calculated for the site level data set. Variables were calculated from 11 
malignant (Mal), 18 adipose and fibroadipose (Adi/FA), and 20 fibrous (Fib) images. Boxplots 
were created for the density of all nuclei, the density of the smaller nuclei (green), and the 
density of the larger nuclei (red) and are shown in A, B, and C respectively. P values calculated 
from Wilcoxon rank sums are shown in each boxplot. A scatterplot of the density of the larger 
nuclei (red) versus the density of the smaller nuclei (green) is shown in D. 
 
Next, the variables illustrated in Figure 2.2 were used to construct univariate and multivariate 
logistic regression model. In order to evaluate the performance of each mode, the site level data 
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was broken into a training set and testing set. The number of sites that fell into each set is 
shown in Table 2.2. 

Table 2.2. Site level training and testing sets 
Primary histology All site level Training set Testing set 
# of sites 50 25 24 
Malignant 11 (22.0%) 5 (20.0%) 6 (25.0%) 
     Invasive ductal carcinoma (IDC) 9 (18.0%) 4 (16.0%) 5 (20.8%) 
     Invasive lobular carcinoma (ILC) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
     Ductal carcinoma in situ (DCIS) 2 (4.0%) 1 (4.0%) 1 (4.2%) 
Benign 39 (78.0%) 20 (80.0%) 18 (75.0%) 
     Adipose, fibroadipose 18 (36.0%) 10 (40.0%) 8 (33.3%) 
     Fibroglandular, fibrous, glandular 20 (40.0%) 10 (40.0%) 10 (41.2%) 
     Fibroadenoma, papilloma 1 (2.0%) 0 (0.0%) 0 (0.0%) 

Models were constructed using the density variables shown in Figure 2.2. ROC curves are 
shown for both the training and testing data sets in Figure 2.3. All variables performed 
comparably on the training set. The variable that had the smallest difference between the 
training and testing set was the density of the smaller nuclei (green).  
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Figure 2.3. Models developed based on the site level data set. The receiver operator curves 
(ROCs) for all models are shown in A-D. Each plot contains the ROC curve associated with the 
training and testing data sets. The area under the curve for the training set (Train AUC) and the 
AUC associated with the testing set (Test AUC) are shown on each plot. The density of the 
smaller nuclei (green), the density of the larger nuclei (red), and the density of all nuclei are 
referred to as Density (green), Density (red), and Density (both) respectively. 

Biopsy level analysis: Next the models developed for the site level data set were applied to the 
biopsy mosaics. Figure 2.4 shows a representative example of a malignant and benign biopsy 
from our study. Each side of the biopsy was scanned length-wise—side 1 corresponds to the 
top row and side 2 corresponds to the bottom row. In many cases, when the biopsy was rotated 
to image the other side, the tissue either slightly shrank or expanded; therefore, the same 
number of images was not always obtained for each side. Black images merely serve as place 
holders to indicate when this occurs in a biopsy mosaic. A three prong diagnosis was given for 
each biopsy. In the malignant example in Figure 2.4 A, the left hand side contains IDC, the 
middle contains IDC and fibrous tissue, and the right hand side contains adipose tissue and 
inflammation. The probability that each image is malignant (based on the Density (green) model 
shown in Figure 2.3 B) was determined and the distribution of probability values is shown as a 
cumulative distribution function (cdf) in Figure 2.4 C. The vertical black line in Figure 2.4 C 
corresponds to the optimal threshold value (25%), which was determined with the site level 
ROC curves in Figure 2.3 B. All of the images above 25% are circled in red in Figure 2.4 A and 
B. 
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Figure 2.4. The application of an algorithm based on sparse decomposition (SD), and circle 
transform (CT) applied to representative breast biopsy mosaics. Positive and negative biopsies 
are shown in A and B respectively. Scale bar is 200 µm. The density (green) model developed 
on the site level data above was applied to the representative breast biopsy mosaics in A and B. 
The probability that each image is malignant was determined and the distribution of probability 
values is shown as a cumulative distribution function (cdf) in C. The vertical black line 
corresponds to the optimal threshold value (25%), which was determined with the site level 
ROC curves in Figure 4B. All of the images above 25% are circled in red in A and B. 

The models developed on the site level data in Figure 2.3 were applied to each image in the 
biopsy mosaics. The probability that each image is malignant was determined and the 
distributions of probability values are shown as cumulative distribution functions (cdfs) in Figure 
2.5 A-D. The dotted black line corresponds to the optimal threshold value (25%), which was 
determined with the site level ROC curves in Figure 2.3 A-D. 
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Figure 2.5. Variables calculated for the biopsy level data set. Variables were calculated from 22 
malignant and 31 benign biopsies. The models developed on the site level data in Figure 2.3 
were applied to each image in the biopsy mosaics. The probability that each image is malignant 
was determined and the distributions of probability values are shown as cumulative distribution 
functions (cdfs) in A-D. The vertical black lines correspond to the optimal threshold value (25%), 
which was determined with the site level ROC curves in Figure 2.3 A-D. 

The optimal observation points were used to generate a ROC curve associated with each model 
and are shown in Figure 2.6. As seen, the AUC associated with the density of the smaller nuclei 
(green) is the highest (AUC = 0.73).  
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Figure 2.6. The receiver operator characteristic (ROC) curves associated with the optimal 
threshold value for each model shown in Figure 2.5 are shown here. The area under the curve 
(AUC) is shown on each plot. The density of the smaller nuclei (green), the density of the larger 
nuclei (red), and the density of all nuclei are referred to as Density (green), Density (red), and 
Density (both) respectively. 

The optimal cut point on the density (green) ROC curve in Figure 2.6 B yielded 16 TP, 6 FN, 20 
TN, and 11 FP, resulting in a sensitivity of 73% and a specificity of 65%. The number that fell 
within each pathology category is shown in Table 2.3. As seen, the largest number of FNs were 
from the IDC and DCIS categories and the largest number of FPs were from the fibrous 
category.  

Table 2.3. Number of true positive (TP), false negative (FN), true negative (TN), and false 
positive (FP) biopsies associated with Density (green) 
Category Total TP FN TN FP 
Malignant 22 16 6 0 0 
     Invasive ductal carcinoma (IDC) 17 14 3 0 0 
     Invasive lobular carcinoma (ILC) 2 2 0 0 0 
     Ductal carcinoma in situ (DCIS) 3 0 3 0 0 
Benign 31 0 0 20 11 
     Adipose, fibroadipose 6 0 0 3 3 
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     Fibroglandular, fibrous, glandular 19 0 0 14 5 
     Fibroadenoma, papilloma 6 0 0 3 3 

Correctly and incorrectly classified representative malignant biopsies that contain IDC are 
shown in Figure 2.7 A and B respectively. The probability that each image is malignant (based 
on the density (green) model) was determined and the distributions of probability values are 
shown as cumulative distribution functions (cdfs) in Figure 2.7 C. As seen, a large proportion of 
the images have a very high probability of being malignant based on the density (green) model 
developed in the previous figures. Conversely no images within the incorrectly classified biopsy 
have a probability greater than 30% that they are positive. This is likely due to the large variation 
in the staining of these samples. Particularly, there is quite a bit of haze from background 
staining in B, which is preventing SD+CT from segmenting individual nuclei.  

Figure 2.7. Correctly and incorrectly classified representative malignant biopsies that contain 
IDC are shown in A and B respectively. Scale bar is 200 µm. The probability that each image is 
malignant (based on the Density (green) model) was determined and the distributions of 
probability values are shown as cumulative distribution functions (cdfs) in C. The vertical black 
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line corresponds to the optimal threshold value (25%), which was determined with the site level 
ROC curves in Figure 2.3 B. All of the images above 25% are circled in red in A and B. 

Similarly correctly and incorrectly classified representative benign biopsies that contain mostly 
adipose or fat tissue are shown in Figure 2.8. As seen, there are large differences in staining 
between these two samples. In particular in the incorrectly classified benign sample in Figure 
2.8 B there is quite a bit of cellular fibrous tissue in between the adipocytes that is picking up the 
stain and consequently a large number of nuclei are segmented with SD+CT. This is reflected in 
the probability distributions—the correctly classified distribution goes straight up (in other words 
no images have a large probability of being malignant) while the incorrectly classified 
distribution looks very similar to the malignant distributions seen above. 

Figure 2.8. Correctly and incorrectly classified representative benign biopsies that contain 
mostly adipose or fat tissue are shown in A and B respectively. Scale bar is 200 µm. The 
probability that each image is malignant (based on the Density (green) model) was determined 
and the distributions of probability values are shown as cumulative distribution functions (cdfs) 
in C. The vertical black line corresponds to the optimal threshold value (25%), which was 
determined with the site level ROC curves in Figure 2.3 B. All of the images above 25% are 
circled in red in A and B. 
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Conclusions: 

In conclusion, high resolution fluorescence imaging of acriflavine stained tissue combined with 
an algorithm that leverages sparse decomposition analysis provides a rapid, non-destructive 
and automated strategy for quantitative pathology of thick tissues with non-uniform background 
heterogeneity. Density (green) achieved the highest AUCs on the site level testing set (AUC = 
0.93) and the highest AUC on the biopsy level data set (AUC = 0.73).  This provides a powerful 
alternative to complicated and time-intensive immunohistochemistry techniques, which require 
fixing, sectioning, and staining and which can only be diagnosed by a highly trained pathologist.  

Plans for year 6: 

During year 6, we plan to finalize our diagnostic model to yield the optimal separation between 
positive and negative biopsies. This includes further identifying why biopsies are being 
incorrectly classified, and potentially iterating on our model building in order to achieve optimal 
performance.  Together, this work will yield an optimized set of tools that are capable of imaging 
thick tissue at high resolution with no tissue processing and that can automatically segment and 
quantify those specimens. 

Part B – Rice University 
We are also collaborating extensively with Rice University to optimize our microscopic imaging 
and image analysis approach. Specifically, Rice is also working with acriflavine staining and 
fluorescence microscopy, but are focusing more on quantification of ductal and adipose features 
that could work in conjunction with our nuclei segmentation approach to yield optimal diagnosis 
of breast morphology.  

Introduction: 

Breast cancer is a leading cause of cancer mortality in women worldwide [43, 44], and although 
most patients are diagnosed with localized cancer, tumor size and presence of metastasis 
remain the main prognostic factors for survival [44, 45]. Current imaging tools provide limited 
ability to detect early lesions and to image relevant biomarkers in situ. Thus developing novel 
strategies for early detection of invasive and metastatic disease may have a significant impact 
on reducing patient morbidity and improving survival.   

Traditional methods for early detection of breast cancer, including physical examination, 
mammography, ultrasound, and magnetic resonance imaging (MRI), are limited by low 
sensitivity and specificity for pre-malignant lesions [46-52]. In addition, these imaging methods 
do not give molecular information. As a result, histologic assessment is currently the reference 
standard for early diagnosis of breast cancer lesions and assessment of relevant biomarkers, 
which also typically requires immunohistochemical (IHC) staining. Both histologic assessment 
and IHC require biopsy, take extensive time to perform, and may need to be repeated in cases 
where lesions are missed due to sampling error. Histologic assessment has a limited ability to 
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monitor response to targeted therapy, because of the need to obtain tissue specimens and the 
extensive time required to prepare and review tissue specimens.  

Optical imaging approaches have the potential to address the limitations of traditional methods 
to detect breast cancer and monitor response to therapy and can provide the ability to image 
lesions in real time with minimal invasion [53-63]. With the introduction of fiber optic probes, 
images can be acquired intraoperatively or through needles with high spatial resolution to 
visualize subcellular morphology and tumor microenvironment [54, 55, 64].  It is also possible to 
add molecularly targeted, optically active contrast agents to image changes in biomarker 
expression [65].  A number of high resolution imaging approaches have been proposed to 
characterize breast lesions, including confocal reflectance and fluorescence microscopy, fiber 
optic microendoscopy (FOME).   

The long term objective of this work is to develop and apply imaging systems and molecular 
contrast agents which can be used in patients to 1) improve early detection and rapid 
assessment of breast cancer lesions, 2) aid in selection of targeted therapeutics, and 3) monitor 
the efficacy of these therapeutics in real-time. 

Progress to Date: 

Rice’s progress to date is split into three sections, each of which describes the methods, results, 
and preliminary conclusions involved. Sections include the following: 

1) Feasibility of optical imaging techniques for imaging human breast tissue: 2011-2014

2) Adipocyte segmentation study: 2012-2014
3) Evaluation of invasive tumor cellularity in inflammatory breast cancer core needle biopsy

specimens: 2013-2014

Feasibility of optical imaging techniques for imaging human breast tissue: 2011-2014: 

Breast cancer development is a complex process which occurs when atypical ductal hyperplasia 
progresses to low grade ductal carcinoma in situ (DCIS), a malignant precursor to invasive 
breast cancer [66]. Identification of DCIS is important for preventing the development of invasive 
breast cancer; however, it is difficult to distinguish DCIS – a malignant lesion - from ductal 
hyperplasia – a non-neoplastic lesion [67].  

The current standard for breast lesion assessment is histologic assessment of tissue specimens 
stained with hematoxylin and eosin (H&E), which is limited by extensive preparation steps and 
time requirements. There is an unfulfilled need for clinical imaging tools to evaluate tumor 
margins, residual tumor in the resection bed, adequacy of core needle biopsy specimens for 
biobanking or genetic studies, and to monitor disease regression in response to treatments that 
are being tested in animal studies. Optical imaging techniques such as confocal fluorescence 
microscopy have the potential to meet these needs [17, 61, 63, 65, 68, 69]. Confocal 
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fluorescence microscopy can be used in a clinical setting to acquire high resolution images of 
breast tissue architecture at near video rate. In addition, it can be performed on fresh tissue, 
and require minimal tissue preparation. The objective of this study was to determine whether 
images of fresh human breast tissue acquired with confocal fluorescence microscopy provide 
sufficient information to enable discernment of neoplastic and non-neoplastic breast features. 

To meet this objective, the aims of this study were to: 

a. Characterize the microscopic architecture of normal, benign and neoplastic breast
biopsies visible using confocal fluorescence microscopy

b. Evaluate diagnostic accuracy of confocal fluorescence microscopy to assess breast
architecture compared to the standard for breast lesion assessment: histology with H&E
staining

c. Quantitatively analyze metrics of morphologic changes associated with progression from
non-proliferative and hyperplastic ducts to DCIS and to compare performance of these
metrics for classification of DCIS in confocal and histologic images.

Methods: 

1) We continued to use a commercial confocal microscope (Vivascope 2500, Caliber
Imaging and Diagnostics, Inc.) to image resected breast tissue and needle biopsy
specimens (n = 139 specimens from 73 patients). There were 253 ROIs identified which
had corresponding breast architecture in confocal fluorescence and histologic images.
The images were assembled into the existing library, which we have previously used to
facilitate comparison between high resolution optical images and the corresponding
histological sections (Figure 2.9).

2) We developed a computerized algorithm to automate segmentation of ducts and lumens
in confocal fluorescence images (Figure 2.10).

a. To enhance image contrast, a low pass filter was applied to images followed by
adaptive histoequalization.

b. To segment duct walls, images were converted from grayscale to binary with a
user-defined threshold tool. The threshold was set at a value which segmented
the duct wall based on fluorescence intensity. Thresholds were chosen so that
binary ducts showed comparable thickness to the ducts observed in the
corresponding raw confocal image.

c. An interactive polygon selection tool was used to segment duct walls from
surrounding features with similarly high fluorescence intensity.

3) Following automated segmentation of ducts and lumens, we used the computerized
algorithm described previously to quantitatively analyze duct morphology in confocal
images using parameters of ducts and lumens, including:

i. duct wall width (mean, standard deviation, and variance)
ii. number of lumens contained within the duct wall
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iii. major and minor dimensions of ducts and lumens
iv. duct and lumen area
v. duct and lumen area fitted to an ellipse
vi. duct and lumen eccentricity
vii. duct and lumen solidity

4) The best performing parameters for classifying DCIS from non-neoplastic ducts were
identified using linear discriminant analysis and each parameter’s performance was
assessed using sensitivity, specificity, and area under the curve (AUC). Mean parameter
values were compared between histologic types of ducts using a Student t-test for
samples with unequal variances.

5) To optimize classification of duct histologic types, we used a classification regression
tree analysis, which identified parameters and cutoff values for those parameters that
would classify DCIS from non-neoplastic ducts with the highest accuracy.

Results: 

1) Parameters of ducts segmented by the automated algorithm were quantified in confocal
images (n = 51 sites) acquired from 12 patients. The parameter which best classifies
DCIS from non-neoplastic ducts in confocal images is number of lumens, which
separates DCIS from non-neoplastic ducts with a sensitivity of 88% and a specificity of
88%, corresponding to an area under the curve of 0.92 (Figure 2.11). DCIS lesions had
a significantly higher average number of lumens compared to non-hyperplastic ducts
and hyperplastic ducts: p < 0.001 by Student t-test (Figure 2.12). The parameter which
best classifies non-hyperplastic ducts from DCIS and hyperplasia is median duct wall
width; sensitivity of 75% and specificity of 100%, which corresponds to an area under
the curve of 0.91 (Figure 2.13). Hyperplastic ducts and DCIS lesions have significantly
higher average median duct wall width than non-hyperplastic ducts: p < 0.05 for
hyperplastic ducts and p < 0.01 for DCIS lesions (Figure 2.14).
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Figure 2.9 Representative images in library of breast features identified in confocal and 
histologic images. Architecture indicative of normal breast tissue (A-J), benign changes (K-N), 
and neoplastic disease (O-T) were identified at corresponding sites in histologic and confocal 
images. Normal breast tissue features identified include: adipose tissue (A,B), fibrous tissue 
(C,D), blood vessels (E.F), non-hyperplastic ducts (G,H), and lobules (I,J). Some features 
identified were indicative of benign changes, including usual ductal hyperplasia (K,L) and 
sclerosing adenosis (M,N). Neoplastic disease types identified include invasive lobular 
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carcinoma (O,P), invasive ductal carcinoma (Q,R), and inflammatory breast cancer (S,T). Scale 
bars are 100µm.  

Figure 2.10 Automated algorithm to segment ducts in confocal images. (1) Raw image acquired 
from confocal fluorescence microscope with 750 x 750 µm field of view. (2) Wiener low pass 
filter and adaptive histoequalization applied to (1). (3) Convert (2) from grayscale to binary 
image with interactive threshold tool. (4) Select Region of Interest (ROI) around ducts with 
interactive polygon selection tool. (5) Fill boundaries of ducts identified in (4) to segment the 
outer boundaries of the duct. (6) Select the complement of (4) to segment the inner boundaries 
of the duct (lumen).  
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Figure 2.11 Number of lumens as a parameter to classify DCIS in confocal images. The 
parameter that results in the best separation between DCIS and non-neoplastic ducts is the 
number of lumens, with a cutoff of 2 lumens (sensitivity = 88%, specificity = 88%, AUC = 0.92).  

Figure 2.12 Boxplot representing the number of lumens segmented with the duct-based 
segmentation algorithm. DCIS lesions have a significantly higher number of lumens than non-
hyperplastic ducts and hyperplasia (p < 0.001). 
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Figure 2.13 Median duct wall width as a parameter to classify non-hyperplastic ducts in 
confocal images. The parameter that results in the best separation between non-hyperplastic 
ducts and DCIS lesions and hyperplasia is median duct wall width, with a cutoff of 26.7 µm 
(sensitivity = 75%, specificity = 100%, AUC = 0.91).  

Figure 2.14 Boxplot representing the median duct wall width measured with the duct-based 
segmentation algorithm. Median duct wall widths are significantly higher in hyperplastic ducts (p 
< 0.05)  and DCIS lesions (p < 0.001) than in non-hyperplastic ducts.  
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2) Using classification regression tree analysis, we developed a model to classify ducts by
histologic type (Figure 2.15). The two parameters which resulted in the most accurate
classification of DCIS through the classification regression tree model are median duct
wall width with a cutoff value of 26.7 µm and number of lumens with a cutoff value of 2
lumens. Using this model, DCIS was classified with 88.5% sensitivity and 92%
specificity, and 88% of the 51 sites were correctly classified.

Figure 2.15 Classification regression tree model developed to optimize classification of DCIS 
from non-neoplastic ducts.  

Conclusions: 

In this study, we developed an automated algorithm to segment breast ducts observed in 
confocal fluorescence images. Using the previously developed computerized algorithm, we 
quantitatively analyzed parameters of ducts segmented from confocal images.  
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Our findings suggest that quantitative analysis of duct morphology in confocal fluorescence 
images could potentially provide an objective method to assess duct histology and classify DCIS 
from benign ducts. This study has potential for use in clinical and research settings, including 
applications in 1) assessment of tumor margin status, and 4) evaluation of disease regression 
and progression in animal studies.  

Adipocyte segmentation study: 2012-2014: 

Extensive literature has shown that stromal components in the tumor microenvironment play a 
role in breast carcinoma progression and invasion [70-73]. It has recently been suggested that 
adipocytes located adjacent to tumors participate in crosstalk with invasive cancer cells through 
bi-directional paracrine signaling pathways, which affect processes such as tissue remodeling, 
adipogenesis and energy metabolism, oncogenesis, inflammation, and immune response [70].  
The objective of this study is to use confocal fluorescence microscopy to evaluate morphological 
characteristics of adipocytes adjacent to neoplastic and non-neoplastic breast tissue to 
determine if there is a correlation between adipocyte morphology and clinical diagnosis.  

Methods: 

1) The confocal fluorescence images of tissue specimens acquired in the previous study
were used as the basis for quantitative evaluation of the morphology of adipocytes
adjacent to invasive ductal carcinoma, DCIS, and normal collagen.

2) We used the previously developed algorithm to segment and analyze adipocyte cells in
confocal fluorescence images adipose tissue in specimens with invasive ductal
carcinoma, DCIS, and normal collagen (Figure 2.16). The following parameters of
adipocyte cells were measured for each cell within a 750 x 750 µm site:

i. Cell area: adipocyte area based on segmentation
ii. Ellipse area: ellipses were fitted to each cell within a site
iii. Major dimension: larger dimension of the ellipse fitted to each cell
iv. Equivalent diameter: the diameter of a circle with the same area as the

segmented adipocyte
v. Cell eccentricity: ratio of the distance between the focus of the ellipse and its

major dimension
vi. Cell solidity: proportion of pixels in the convex hull which are also within the

segmented adipocyte

3) Mean parameter values were compared between adipocytes measured in sites near
invasive ductal carcinoma, DCIS, and normal collagen using a Student t-test for samples
with unequal variances.
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Results: 

1) Adipocytes were segmented and analyzed in tissue specimens acquired from 14
patients (Table 2.4). A single site consists of a 750 x 750 µm confocal microscope field
of view. Regions consist of groups of 2-4 adjacent sites, where one site is located at the
edge of invasive ductal carcinoma, DCIS, or normal collagen, and the additional sites
are located in a single file line extended from the first site and into adipose tissue (Figure
2.16). At each site adipocytes were segmented using the previously described algorithm
(Figure 2.17).

Table 2.4 Summary of Patients, Regions, and Sites for Adipocyte Data 
Diagnosis Patients Regions Sites Adipocytes 
IDC tumor Neoplastic 14 40 135 6675 
DCIS Neoplastic 2 9 160 1438 
Collagen Benign 14 41 160 5940 
All 14 90 326 14053 

Figure 2.16 Representative images of confocal images of breast tissue, in which adipocytes 
were measured. Adipocytes were measured in regions consisting of 2-4 sites (750 x 750 µm), at 
sites located near IDC (A.I-IV), DCIS (B.I-IV), and normal collagen (C.I-IV). where the first site is 
located adjacent to invasive ductal carcinoma, DCIS, or normal collagen (A.I, B.I, C.I) and 
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additional sites are oriented in a straight line into adipose tissue (A.II-IV, B.II-IV, C.II-IV). Scale 
bar is 100 µm.  

Figure 2.17 Representative sites showing segmented adipocytes. Adipocytes were segmented 
using the previously described algorithm, which identified adipocyte outlines (green lines) and 
approximated the adipocyte outlines by fitting an ellipse to each adipocyte (red ellipses). 
Adipocytes were analyzed at locations adjacent to invasive ductal carcinoma (IDC), ductal 
carcinoma in situ (DCIS), and normal collagen (A.I, B.I, C.I) and at sites extending laterally into 
adipose tissue. The sites furthest from the edge of IDC, DCIS, and collagen were >= 2 mm 
away (A.IV, B.IV, C.IV).  

2) All parameters except average solidity showed a significant difference in average value
from the sites adjacent to IDC, DCIS, and collagen (Figure 2.16: A.I, B.I, C.I) to the next
site further from the margins of non-adipose tissue (Figure 2.16: A.II, B.II, C.II). The
parameters that showed the most significant differences between adipocytes adjacent to
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neoplastic sites compared to adipocytes adjacent to collagen were average ellipse area 
(Figure 2.18) and average equivalent diameter (Figure 2.19).  

3) Average ellipse area measured the average area of ellipses fitted to the segmented 
adipocytes. Significantly larger values for average ellipse area were observed between: 

i. Sites adjacent to IDC, DCIS, and collagen and the second site extending into 
adipose tissue (Figure 2.18: A.I vs A.II, B.I vs. B.II, and C.I vs. C.II) 

ii. Sites adjacent to IDC, DCIS, and collagen and the forth site extending into 
adipose tissue (Figure 2.18: A.I vs A.IV, B.I vs. B.IV, and C.I vs. C.IV) 

iii. Sites adjacent to IDC and sites adjacent to collagen (A.I vs. C.I) 
iv. Sites adjacent to DCIS and sites adjacent to collagen (B.I vs. C.I) 

4) There were no significant differences in values for average ellipse area observed 
between  

i. Sites adjacent to IDC and sites adjacent to DCIS (A.I vs. B.I) 
ii. The sites measured furthest from IDC margins and sites adjacent to collagen 

(A.IV vs. C.I) 
iii. The sites measured furthest from DCIS margins and sites adjacent to collagen 

(B.IV vs. C.I) 
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Figure 2.18 Boxplot of average area of ellipses fitted to adipocytes (pixels) for fields of view 
measured near IDC (A), DCIS (B), and Collagen (C). N indicates the number of fields of view in 
which adipocytes were measured. Student t-tests were performed to compare the average 
ellipse area for fields of view at different locations relative to IDC (A.I-IV), DCIS (B.I-IV), and 
collagen (C.I-IV) margins. P-values < 0.05 indicate significant differences in average ellipse 
area between different fields of view (*p < 0.05, **p < 0.01, ***p < 0.001).  

5) Average equivalent diameter is a measure of the diameter of a circle with the same area
as the adipocyte. Significantly larger values for average equivalent diameter were
observed between:

i. Sites adjacent to IDC, DCIS, and collagen and the second site extending into
adipose tissue (Figure 2.18: A.I vs A.II, B.I vs. B.II, and C.I vs. C.II)

ii. Sites adjacent to IDC, DCIS, and collagen and the forth site extending into
adipose tissue (Figure 2.18: A.I vs A.IV, B.I vs. B.IV, and C.I vs. C.IV)

iii. Sites adjacent to IDC and sites adjacent to collagen (A.I vs. C.I)
iv. Sites adjacent to DCIS and sites adjacent to collagen (B.I vs. C.I)
v. The sites measured furthest from DCIS margins and sites adjacent to collagen

(B.IV vs. C.I)
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6) There were no significant differences in values for average ellipse area observed
between

vi. Sites adjacent to IDC and sites adjacent to DCIS (A.I vs. B.I)
vii. The sites measured furthest from IDC margins and sites adjacent to collagen

(A.IV vs. C.I)

Figure 2.19 Boxplot of average equivalent diameters (pixels) of adipocytes in fields of view 
measured near IDC (A), DCIS (B), and Collagen (C). N indicates the number of fields of view in 
which the equivalent diameter of adipocytes was measured. Student t-tests were performed to 
compare the average equivalent for fields of view at different locations relative to IDC (A.I-IV), 
DCIS (B.I-IV), and collagen (C.I-IV) margins. P-values < 0.05 indicate significant differences in 
average equivalent between different fields of view (*p < 0.05, **p < 0.01, ***p < 0.001). 

Conclusions: 

We show that adipocytes adjacent to invasive ductal carcinoma and DCIS have similar physical 
characteristics: 1) adipocyte area and diameter are significantly lower immediately adjacent to 
neoplastic lesions than 2 mm from the margins of neoplastic lesions; 2) adipocyte area and 
diameter are significantly lower adjacent to neoplastic lesions than in normal tissue adjacent to 
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collagen; 3) there is no significant difference in adipocyte area or diameter between adipocytes 
adjacent to invasive ductal carcinoma and DCIS; and 4) there is no significant difference in 
adipocyte area between cells 2 mm from the margins of neoplastic lesions and cells 
immediately adjacent to normal collagen.  
 
The findings of this study indicate that adipocyte area and diameter could potentially be used as 
architectural biomarkers to characterize the malignant potential of a lesion. Additional work 
should be done to evaluate clinical factors and/or genetic/epigenetic factors that correlate with 
adipocyte size.  
 
Evaluation of invasive tumor cellularity in inflammatory breast cancer core needle biopsy 
specimens: 2013-2014: 
 
Inflammatory breast cancer is a rare and aggressive type of breast cancer, which typically 
presents with erythema and edema [74]. Tissue sampling with image-guided core needle biopsy 
(CNB) is a particularly problematic issue with inflammatory breast cancer, because most cases 
do not present with a discrete mass [75]. A method is needed to evaluate specimen accuracy 
immediately following CNB. In this study, our objective was to determine if confocal 
fluorescence microscopy can provide images with sufficient detail to evaluate the adequacy of 
CNB specimens with inflammatory breast cancer.  
 
Methods:  
 

1) Fresh CNB specimens were acquired within 30 minutes of the biopsy procedure. 
Specimens were stained with 0.01% proflavine for 1 minute prior to imaging. Grayscale 
confocal fluorescence images of CNB specimens were acquired and specimens were 
then submitted for routine histologic preparation and processing.  

2) Grayscale confocal images of CNB specimens were false colored to resemble histologic 
staining by combining experimentally-determined color values for hematoxylin and eosin 
(H&E) [76]. 

3) To assess if images had sufficient detail to evaluate CNB specimen adequacy, a breast-
dedicated pathologist evaluated invasive tumor cellularity in grayscale and false colored 
confocal fluorescence images and in histologic images with H&E staining.  

4) We quantified agreement between estimates of invasive tumor cellularity with a kappa 
coefficient.  
 

Results: 
 

1) We acquired images of 23 CNB specimens from 23 patients with suspected 
inflammatory breast cancer (Figure 2.20). Confocal fluorescence images of CNB 
specimens were acquired in an average time of less than 2 minutes.  
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Figure 2.20 Representative core with invasive tumor and non-neoplastic tissue; 25% cellularity 
estimated by author S.K. in histologic image (standard H&E staining), 30% cellularity estimated 
in grayscale confocal fluorescence image (0.01% proflavine staining), 25% cellularity estimated 
in false colored confocal fluorescence image derived from grayscale image (0.01% proflavine 
staining). The solid outlined region indicates areas of the CNB specimen that contain invasive 
tumor. The scale bar at left is 750 µm. The insets at right show the border between neoplastic 
and non-neoplastic tissue in the CNB specimen. The locations of the insets are indicated in 
each core by a square with dashed lines. The scale bar at right is 100 µm. 

2) Scatterplots of tumor cellularity estimates (Figure 2.21) show that estimated cellularity
values were more consistent between histologic and grayscale confocal images (R2 =
0.88) than between histologic and false colored confocal images (R2 = 0.61).

3) The kappa coefficient calculated for agreement between histologic and grayscale
confocal images indicates moderate agreement based on defined categories for kappa
values [77]; κ = 0.48 ± 0.09 (p < 0.001). Agreement between histologic and false colored
confocal images was fair and not statistically significant; κ = 0.28 ± 0.26 (p = 0.14).
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Figure 2.21 Scatterplots illustrating agreement on estimated invasive tumor cellularity between 
image types. Each data point represents a CNB specimen. Dashed lines represent the linear fit 
of the data. Pearson coefficients (R²) quantify the linear fit of invasive tumor cellularity data. A: 
Invasive tumor cellularity estimates from grayscale confocal images and histologic images. B: 
Invasive tumor cellularity estimates from false colored confocal images and histologic images. 

Conclusions: 

We show that grayscale confocal images of CNB specimens require an average of only 2 
minutes for acquisition.  Evaluation of invasive tumor cellularity CNB specimens shows that 
grayscale confocal images have moderate agreement of estimated tumor cellularity compared 
with histologic images. We show that confocal fluorescence microscopy could potentially be 
used for assessment of CNB specimen adequacy, so that additional could be performed without 
need for a repeat visit. 

Plans for year 6: 

Our goals for year 6 are to: 
1. Finalize our decision tree model to optimize classification of DCIS from benign ducts in

confocal fluorescence images. This goal will include an evaluation of which types of
ducts are being incorrectly classified.

2. Continue our analysis of adipocyte physical characteristics at sites at the margins of
neoplastic and non-neoplastic tissue. We will measure adipocyte parameters at
additional sites in confocal images and assess clinical parameters, including critical
hormone status (i.e. estrogen receptor negative, HER2 positive, and triple negative
receptor status), histologic degree of differentiation, lymph node status, and presence of
distant metastases, which may be correlated with the quantified adipocyte
characteristics.

3. Recruit additional readers to review the three types of images of CNB specimens in
order to assess readers’ performance in estimating invasive tumor cellularity in different
types of images and to compare inter- and intra-reader agreement.
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Our long term goal is to develop tools to facilitate early diagnosis of breast cancer by improving 
the ability to identify in real time whether breast biopsies have adequately sampled the lesion 
under investigation and to facilitate effective surgical treatment by improving the ability to 
adequately survey the tumor bed for residual DCIS disease.  

Aim 3: Optical quantitative biology to assess therapy response in different sub-types of 
breast cancer: 

The current goals of Aim 3 include adding new endpoints for more precise cancer metabolism 
imaging and transitioning our imaging method into a clinically translatable optical spectroscopy 
system. In Year 5, we have worked toward the goals presented in our previous report’s Year 5 
plans. We presented the results and published a conference proceeding detailing a fluorophore 
delivery correction method proposed in the Year 4 report (Frees, Proc. SPIE 8947, Imaging, 
Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII 2014). A complete 
manuscript has since been prepared and submitted for review. We had previously shown that 
uptake of a fluorescent glucose marker, 2-NBDG, was influenced by the rate at which it was 
delivered to tissue. We performed in vivo experiments in non-tumor tissue to understand the 
factors affecting 2-NBDG delivery and validated that a delivery correction factor “RD” was able to 
account for these experimental and physiological variables. 

We have also demonstrated the feasibility of a fluorescent marker of mitochondrial membrane 
potential- TMRE- to further inform on cell phenotype. A combination of 2-NBDG, oxygen, and 
TMRE would be a reporter on both cell metabolism and overall cell “health”- namely, whether or 
not the cell is undergoing apoptosis, which may cause a loss of mitochondrial membrane 
potential. The combination of cell metabolism and apoptotic state would be a powerful endpoint 
for determining a tumor’s response to therapy. We used optical imaging to show that  

Our long-term goal is to transition our metabolic imaging method into primarily a 
spectroscopy/spectral imaging platform to enable clinical translation. This year, we have made 
great progress toward this goal by optimizing 2-NBDG and oxygenation optical spectroscopy in 
4T1 and 4T07 murine mammary tumor xenografts. We have now shown that 2-NBDG 
fluorescence, corrected for absorption and scattering effects of tissue, is greater in tumor than in 
non-tumor tissue in vivo. A manuscript has recently been prepared and submitted on the optical 
spectroscopy results. 

Here, we show our work in Aim 3 in two sections – High-resolution imaging and optical 
spectroscopy. 
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Part A: High resolution imaging of tumor microenvironment 

Introduction: 

Due to advances in genetic profiling, a host of targeted therapies has been developed to 
pinpoint specific mutations in cancer [78, 79]. For example, several drugs have been developed 
that inhibit PI3K signaling, which is dysregulated in cancers of the breast, colon, and ovary, 
among others [80-83]. Some of these targeted therapies can improve tumor perfusion, and 
hence, delivery of imaging agents such as FDG, while independently modifying intrinsic glucose 
demand [84]. On the other hand, highly angiogenic tumors or tumors with aberrant vascular 
signaling may have limited capacity for nutrient or drug delivery [85]. The limited delivery of 
FDG, for example, could lead to an incorrect perception that the tumor’s demand for glucose is 
low.  

Understanding a tumor’s metabolic phenotype free of delivery effects has two important 
implications for cancer therapy. First, understanding a tumor’s phenotype can help avoid 
overtreatment and aid in selection of an appropriate therapy (treatment planning). Second, 
cancer therapies such as small molecules or radiation may alter the tumor’s metabolic state 
(response monitoring).  

Our ultimate goal is to understand a tumor’s “baseline” (pre-treatment) metabolic phenotype and 
understand how the phenotype relates to aggressiveness. Further, we are interested in the 
relationship between metabolic changes and long-term response to therapy. In this report, we 
show the progress we have made and the future work we have planned toward our goal. 

Methods: 

Cell Culture Maintenance and Seahorse Assay 

Two murine mammary carcinoma cell lines, 4T1 and 4T07, were used in this study. Though 
arising from the same tumor, the cell lines have distinct different metastatic potential [86].  4T1 
cells have been shown to metastasize throughout the body to organs such as the lung, liver, 
bone and brain.  4T07 is able to seed into the lung and liver but it fails to engraft to form 
metastatic nodules. Both cell lines were cultured in Dulbecco’s Modified Eagle Medium (DMEM, 
Gibco, Carlsbad, California) supplemented with 10% fetal bovine serum and 1% antibiotics and 
kept free from contaminants. Cells were passaged every 2-3 days and kept incubated at 37.0°C 
and 5.0% O2.  

A Seahorse Glycolytic Stress Test [Seahorse Biosciences, Massachusetts, USA] was used to 
measure the metabolic properties of 4T1 and 4T07 cells. Oxygen consumption rate (OCR) and 
extracellular acidification rate (ECAR) were measured every 11 minutes. OCR was calculated 
based on changes in dissolved oxygen in the cell media and ECAR was calculated based on 
detection of changes in free proton concentration in the cell media. Between minute 22 and 
minute 33 of the assay, 25mM glucose was injected to each well. Between minute 55 and 
minute 66, 1uM oligomycin was injected to each well. Oligomycin inhibits oxygen consumption 
used for ATP synthesis through phosphorylating respiration [87]. Results for each well were 
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normalized to the number of cells in each well. Results represent the average of 12 total wells 
for each cell line: assays were performed on 3 different days and each assay contained 4 
replicate wells of each cell line. 

Dorsal Window Chamber Implantation 

All animal work was performed according to the recommendations of the Guide for the Care and 
Use of Laboratory Animals of the National Institutes of Health. The Duke University Institutional 
Animal Care and Use Committee approved all experiments (Protocol Number: A170-12-06). 
Female nu/nu athymic mice (NCI, Frederic, Maryland), 8-10 weeks old and weighing between 
20-25g, were used for all in vivo studies. Murine dorsal window chambers were implanted 
according to the sterile procedure detailed by Palmer [88]. Briefly, mice were anesthetized via 
i.p. administration of ketamine (100 mg/kg) and xylazine (10 mg/kg)) and implanted with a 
titanium dorsal window chamber (APJ Trading Co, Inc, Ventura, California). For tumor 
development, a 20 µL suspension (20,000 cells) of 4T1-RFP or 4T07 cells was injected into the 
dorsal skin fold. No cells were injected into the mice in the normal (non-tumor) group. A glass 
coverslip (diameter = 12 mm, No. 2, Erie Scientific, Portsmouth, New Hampshire) was placed in 
the dorsal chamber to cover the exposed tissue. Animals were housed on-site at Duke 
University under standard 12-hour light/dark cycles. During housing, all animals were 
provided ad libitum access to food and water.  

Imaging Procedure 

During the 6-hour period prior to imaging, animals were fasted but allowed access to water. 
Immediately before imaging, blood glucose was measured from the tail vein using a FreeStyle 
Lite Blood Glucose Meter (Abbott Laboratories, Illinois, USA). Mice were then anesthetized with 
2% v/v isoflurane mixed with air, which was reduced to 1-1.5% v/v isoflurane for maintenance. 
The mouse was kept on a heated stage for the duration of imaging. Prior to fluorophore injection 
trans-illumination images were recorded for vascular characterization. Background fluorescence 
images corresponding to endogenous fluorescence from cellular FAD and stromal collagen at 
525nm were also recorded prior to injection [89]. A 100µL injection of 6mM 2-NBDLG, 6mM 2-
NBDG, or 10mM 2-NBDG in sterile saline was then administered via tail vein. 2-NBDG 
fluorescence was excited at 470nm and collected at 525nm.Fluorescence from the tracer was 
recorded for 60 minutes: continuously for the first 10 minutes, every 30 seconds for the next 30 
minutes and every 3 minutes for the final 20 minutes of imaging. For TMRE imaging, the 
procedure was consistent with 2-NBDG imaging, except the injection contained 0.1mL of 25uM 
TMRE delivered via tail vein. TMRE fluorescence was excited at 545nm and collected at 
590nm. 

For the hyperemia study, which was conducted to extend the range of red blood cell velocities, 
mice were subjected to an hour of breathing hypoxic gas (10% O2, balance N2) and then 
allowed to breathe room air for 10 minutes. Imaging began immediately following the 10-minute 
reoxygenation period using the imaging protocol described above. Mice receiving two 
perturbations (6mM and 10mM, 2-NBDG and 2-NBDLG, or baseline and post-hypoxia imaging) 
were imaged on two consecutive days to allow for 2-NBDG clearance and ample recovery from 
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anesthesia. An overview of methods is shown in Figure 3.1. 

Figure 3.1- Outline of methods. (A) Timeline of imaging events. Mice that were imaged under 
two imaging conditions were imaged on subsequent days. The order of imaging was scrambled 
to minimize order effects. (B) A 6mM injection of 2-NBDG was given and imaged for at least 60 
minutes, and the mean of the tumor region for each image was used to construct a kinetic 
curve. Images for the endpoints 2-NBDG60 (2-NBDG intensity at 60 minutes) and the rate of 
delivery of 2-NBDG (RD = 2-NBDG60/Tmax) are shown. (C) Trans-illumination images were 
collected in 10nm increments from 500-600nm and used to calculate hemoglobin saturation 
(SO2). 

Calculation of Vascular and Metabolic Parameters 

Trans-illumination images were collected in 10nm increments from 500-600nm and used to 
create an image cube (x,y,λ). Our procedure was previously described in detail [90]. A modified 
form of the Beer-Lambert law uses the extinction coefficients of [HbO2] and [dHb] to calculate 
the concentrations of each absorber at each pixel. We then calculate total hemoglobin content, 
[THb] ([HbO2]+[dHb]), and SO2 ([HbO2]/[THb]) at each pixel. The presence or absence of [THb] 
was used to segment the images into vascular and tissue space, respectively.  

After 2-NBDG injection, fluorescence images were collected) for a period of 75 minutes. A 
kinetic uptake curve was created from the (x,y,t) data for each (x,y) pixel location. As shown in 
Figure 1, the initial rate of delivery (RD) and glucose uptake (2-NBDG60) were calculated from 
the time course for each pixel. RD was calculated from the rise to the initial peak of the curve as 
(Imax-I0)/Tmax, where subscript 0 corresponds to a baseline image captured prior to 2-NBDG 
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injection. 2-NBDG60 is defined as glucose uptake. We showed previously that 2-NBDG 
fluorescence at 60 minutes is confined to the intercellular space [90].  

For 4T1 and 4T07 tumors, each endpoint (2-NBDG60, RD, 2-NBDG60/RD) was additionally parsed 
by SO2. For each 2-NBDG60, RD, or 2-NBDG60/RD image, every tissue pixel in the tumor area 
was assigned to an SO2 group according to the SO2 of the nearest vascular pixel. In a given 
image, there were as many as five SO2 groups: 0-10% SO2, 10-20% SO2, 20-40% SO2, 40-60% 
SO2, and 60-80% SO2. The distribution of pixels for each endpoint was then represented as a 
survival curve (1-cumulative distribution) stratified by SO2. Curves were then averaged within a 
tumor type (4T1 or 4T07). Each curve shown in Figure 5 then represents the mean of 
distributions of 2-NBDG60, RD, or 2-NBDG60/RD pixels at a given SO2 level from up to 8 mice. 

The blood flow imaging procedure has previously been described in detail [91]. In short, a video 
of individual red blood cells flowing through vessels in a non-tumor bearing window chamber 
was collected, taking advantage of the absorption properties of hemoglobin. A cross-correlation 
was performed between subsequent frames to track red blood cell movement. For each mouse, 
we calculated both blood velocity and 2-NBDG delivery (RD) in the image region surrounding the 
vessel with the fastest blood velocity. This allowed us to achieve a wide range of blood 
velocities over which to correlate blood velocity with RD. For a given mouse, the same region 
was selected in corresponding blood velocity and 2-NBDG images, and kept consistent between 
days. 

Results: 

Delivery-corrected 2-NBDG-uptake inversely correlates with blood glucose concentration 

Figure 3.2 describes the relationship between the rate of 2-NBDG kinetics and the administered 
2-NBDG dose. Figure 3.2A shows representative images of 2-NBDG uptake over 60 minutes in 
a normal mouse injected with either 6mM 2-NBDG or 10mM 2-NBDG on consecutive days. 
Figure 3.2B summarizes the results of imaging 6mM and 10mM doses in the same cohort of 
mice. The table shows the ratio of endpoints comparing the 10mM and 6mM groups. Each ratio 
was calculated on a per-mouse basis, the ratios for each mouse were averaged, and values are 
presented as mean ratio ± standard error. The expected ratio of 10mM/6mM endpoints is 1.67 if 
all differences between groups are attributable to differences in injected dose. At 5 minutes 
post-injection, the fluorescence ratio of the dose groups (10mM/6mM) closely approached the 
expected ratio of 1.67 (p<0.01), indicating that early time points report primarily on delivery. The 
ratio of RD (calculated as RD(10mM)/RD(6mM)) showed similar results.  

We hypothesized that correcting 2-NBDG uptake for variations in RD due to inter-mouse 
variation and injected 2-NBDG dose would better represent glucose uptake. First, in Figure 3.2C 
we confirmed that while RD and 2-NBDG uptake at 5 minutes post-injection (2-NBDG05) are 
highly correlated (R=0.77, p<0.001), RD and 2-NBDG at 60 minutes post injection are 
independent endpoints (R=0.20, p = N.S., not shown). To validate that delivery-corrected 2-
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NBDG uptake more accurately represents glycolytic uptake, we investigated the correlation of 2-
NBDG60/RD with blood glucose concentration in normal mice. Figure 3.2D shows a significant 
inverse correlation between 2-NBDG60/RD and blood glucose (R=-0.61, p=0.02).  

Figure 3.2. Delivery-corrected 2-NBDG uptake inversely correlates with blood glucose 
concentration. (A) Representative images show the kinetics of 2-NBDG uptake in vivo in non-
tumor window chambers. The same mouse was given 6mM or 10mM 2-NBDG on subsequent 
days and imaged for 60 minutes following injection. (B) Averaged 2-NBDG kinetics for a cohort 
of mice injected with 0.1mL of either 6mM or 10mM 2-NBDG. At 5 minutes post-injection (2-
NBDG05), the fluorescence ratio of the dose groups (2-NBDG05,10mM/2-NBDG05,6mM) was 
proportional to molarity (p<0.01). The table shows the expected ratio of 10mM/6mM 
fluorescence, if all differences in fluorescence were due to dose. 2-NBDG05,10mM/ 2-NBDG05,6mM 
corresponds to the ratio of 10mM and 6mM fluorescence intensities at t = 5 min. The ratio RD,-

10mM/RD,6mM corresponds to the rate of 2-NBDG delivery for 10mM and 6mM. Each group in 
panel B contains the same n=7 subjects. p values are from a student’s paired t-test. Error bars 
show standard error. Values in table are mean ± standard error.  (C) RD was strongly correlated 
with 2-NBDG fluorescence at 5 minutes (p<0.001). RD did not correlate with 2-NBDG60 (not 
shown). (D) 2-NBDG60/RD was inversely correlated with baseline blood glucose in normal mice 
(R=-0.61, p=0.02). 2-NBDG60 was also correlated with blood glucose (R=-0.52, p=0.05, not 
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shown). For animals that received both 6mM and 10mM doses, the average values of the 
endpoints (2-NBDG05, 2-NBDG60, and 2-NBDG60/RD) for both doses were used in calculating the 
correlations. These subjects are denoted by “mean” in the legend. n=15 mice for (C) and (D).  

The rate of 2-NBDG delivery, RD, is positively correlated with blood velocity. 

The results presented in Figure 3.3 show the relationship between red blood cell velocity and 
the rate of 2-NBDG delivery, RD, in corresponding image regions. Each mouse was imaged at 
baseline under normoxic condition (21% inspired O2) and after 10 minutes of re-oxygenation 
from breathing hypoxia (10% inspired O2). Mice were randomly assigned to undergo baseline or 
post-hypoxia (hyperemia) imaging first. Figure 3.3A shows representative images of a mouse at 
baseline and after hypoxia. There is a clear increase in flow velocity as well as RD after hypoxia. 
Figure 3.3B shows that hypoxia was successfully used to significantly increase blood velocity in 
the tissue (p<0.02). Flow velocity increased in all mice after hypoxia. A corresponding significant 
increase in RD was seen after hypoxia (p<0.02). Only one mouse did not show an increase in 
RD. In Figure 3.3C, flow velocity and RD show a strong correlation after hypoxia (R=0.87, 
p<0.05). At baseline, the trend was similar, but the range of flow velocities was truncated 
compared to the group that underwent hypoxia. 

Figure 3.3. The rate of 2-NBDG delivery, RD, is strongly correlated with blood velocity. (A) 
Representative images of blood velocity and the rate of 2-NBDG delivery (RD) in a normal 
mouse at baseline and during reoxygenation after 1 hour of hypoxia.  (B) Paired data for a set of 
mice at baseline and after 1 hour of hypoxia. After hypoxia, flow velocity and RD increased 
significantly (p<0.02 for both). N=6 mice. (C) The rate of 2-NBDG delivery (RD) is highly 
correlated with blood velocity (R=0.87, p<0.05). The trendline corresponds to the trend for post-
hypoxia data only.  
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Delivery-corrected glucose uptake reveals distinct glycolytic phenotypes in metastatic (4T1) and 
non-metastatic (4T07) mammary tumors. 

We used 2-NBDG60/RD to compare tumors with different metabolic phenotypes: metastatic 4T1 
tumors and nonmetastatic 4T07 tumors. Figure 3.4 shows representative images of SO2 and 2-
NBDG60/RD from window chambers with 4T1 or 4T07 tumors. Figure 3.4B shows that averaging 
over the entire tumor regions (or regions of normal tissue) resulted in a significantly higher 2-
NBDG60/RD for 4T1 than for 4T07 (p<0.01). . A Seahorse Glycolysis Stress Test was used on 
4T1 and 4T07 cells to compare with the results of in vivo metabolic imaging. The glycolytic 
capacity, defined as the extracellular acidification rate (ECAR) after blockade of respiration by 
oligomycin, was significantly greater for 4T1 than for 4T07. These results are consistent with the 
intravital microscopy data, in which 4T1 tumors took up significantly more 2-NBDG than 4T07 
tumors, both on average (Fig. 3.4B) and at each SO2 level (Fig. 3.5B). 

An elevated level of glucose uptake may lead to the assumption that the tissue is hypoxic and 
therefore increasingly dependent on glycolysis, but no significant difference in SO2 was seen 
between groups (Fig. 3.4C). Additionally, vascular density, the total length of vessels per unit 
volume, was indistinguishable between 4T1 and 4T07 tumors, implying that differences in SO2 
may be attributable to changes in oxygen consumption. Results of the Seahorse Glycolytic 
Stress Test show that oxygen consumption rate (OCR) is comparable for 4T1 and 4T07 tumors 
(p=N.S.).  

Figure 3.4. Delivery-corrected glucose uptake reveals distinct glycolytic phenotypes in 
metastatic (4T1) and non-metastatic (4T07) mammary tumors. (A) Representative images of 
vascular oxygen saturation (SO2) and delivery-corrected 2-NBDG (2-NBDG60/RD) for a 4T1 
tumor and a 4T07 tumor, in vivo. (B) 2-NBDG60/RD showed contrast in glucose uptake between 
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metastatic 4T1 and non-metastatic 4T07 tumors in vivo (p<0.01). A Seahorse Glycolysis Stress 
Test also revealed that the glycolytic capacity, defined as extracellular acidification rate (ECAR) 
after blockade of respiration by oligomycin, was significantly greater for 4T1 than for 4T07 
(p<0.01). (C) Mean vascular oxygen saturation (SO2) was comparable for 4T07 and 4T1 tumors 
in window chambers (p=N.S.). Vascular density was indistinguishable between tumor lines 
(p=N.S.). A Seahorse Glycolysis Stress Test showed that oxygen consumption rate (OCR) is 
comparable for 4T1 and 4T07 tumors (p=N.S.). Number of mice per group indicated by group 
name on axis. For Seahorse results, n=12 cell samples from 3 distinct assays. Midline of box 
plots show median, box edges correspond to 25th and 75th percentiles, and scatter points show 
all data values. 

The ratio 2-NBDG60/RD facilitates assessment of glucose uptake in heterogeneous regions of 
metastatic mammary tumors. 

Tumor oxygenation plays an important role in metabolism, and varies not only across tumor 
lines but also within a tumor [92, 93]. We parsed our delivery-corrected glucose demand 
endpoint with vascular oxygenation to investigate metabolic heterogeneity in tumors. First we 
compared 4T1 and 4T07 tumors with mean vascular oxygenation values in different SO2 
ranges, shown in Figure 3.5A. After correcting for delivery, the hypoxic 4T1 tumor (mean 
SO2=11%) showed localized regions of high 2-NBDG60/RD uptake not seen in the 4T1 with 
intermediate SO2 (mean SO2=36%) nor in the well-oxygenated 4T07. The well-oxygenated 4T07 
tumor (mean SO2=59%) showed an appreciably decreased 2-NBDG60/RD compared to either of 
the 4T1 tumors. The emerging trend suggested that 2-NBDG/RD increased as average SO2 

decreased.  

We then analyzed each tumor at five levels of vascular oxygenation (SO2) to identify if hypoxic 
regions were responsible for increased mean glucose uptake in 4T1 tumors relative to 4T07 
tumors. Figure 3.5B shows 2-NBDG60, RD, and 2-NBDG60/RD for 4T07 tumors and 4T1 tumors, 
respectively, across vascular oxygenation levels: 0-10% SO2, 10-20% SO2, 20-40% SO2, 40-
60% SO2, and 60-80% SO2. Each curve represents the mean of distributions at a given SO2 
level from up to 8 mice (group numbers listed in parentheses in legend). Interestingly, only two 
4T07 mice exhibited vessels with the lowest levels of oxygenation (0-10% SO2 and 10-20% 
SO2), and therefore were not shown. Similarly, only two 4T1 mice exhibited vessel regions of 
60-80% SO2 and were therefore excluded.  

Within the 4T1 tumors, hypoxic regions had decreased 2-NBDG delivery compared to well-
oxygenated regions (p<0.01, 0-10% SO2 v. 40-60% SO2). There was no difference in uptake 
between other SO2,4T1 groups. RD was also lowest in hypoxic regions of 4T1 (p<0.05 or p<0.01 
for 0<SO2,4T1<10 vs. 20<SO2,4T1<40 or 40<SO2,4T1<60, respectively). The ratio 2-NBDG60/RD 

within 4T1 significantly decreased as vascular oxygenation increased reflecting the Pasteur 
effect (p<0.01 for 0<SO2,4T1<10 vs. 40<SO2,4T1<60). 4T07 tumors showed a different trend in 
uptake. 2-NBDG60 increased from the highest to the lowest SO2 levels of 4T07 tumors (p<0.01 
for 20<SO2,4T07<40 vs. 60<SO2,4T07<80) and there was no difference in RD across SO2,4T07 levels. 
After correction, 2-NBDG60/RD in 4T07 followed a similar trend as in 4T1. 2-NBDG60/RD was 
lowest for 60<SO2,4T07<80 compared to both other SO2,4T07 (p<0.01). 
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Comparison between tumor lines showed that 2-NBDG60 was higher for all 4T1 groups than for 
all 4T07 (p<0.01). On the other hand, delivery (RD) for the best oxygenated 4T07 groups 
(40<SO2,4T07<60 and 60<SO2,4T07<80) was greater than for all 4T1 groups (p<0.01 for all groups 
except 40<SO2,4T1<60 vs. 60<SO2,4T07<80 where p<0.06). At all SO2 levels, 2-NBDG60/RD of 4T1 
tumors exceeded that of 4T07 tumors (p<0.01 for all SO2,4T1 compared to all SO2,4T07). This 
analysis confirmed that 4T1 tumors display increased glucose metabolism regardless of oxygen 
status, not only in response to hypoxia. On the other hand, the low demand for and sufficient 
delivery of 2-NBDG to 4T07 made them statistically indistinguishable from normal tissue (not 
shown). 

Figure 3.5. The ratio 2-NBDG/RD facilitates assessment of glucose demand in 
heterogeneous regions of metastatic mammary tumors. (A) Representative images of 
vascular oxygenation (SO2) and delivery-corrected 2-NBDG (2-NBDG60/RD) for a 4T1 tumor with 
low mean SO2, a 4T1 tumor with intermediate mean SO2, and a 4T07 with high mean SO2. (B) 
Survival curves (1-cumulative distributions) show 2-NBDG60, RD, and 2-NBDG60/RD for regions 
of distinct SO2 (%) in 4T07 and 4T1 tumors. For 4T1, 2-NBDG60 is lower for 0<SO2,4T1<10 
regions than for any other SO2,4T1 (p=N.S.). Significantly lower rates of RD are seen for the 
0<SO2,4T1<10 group than for well-oxygenated 4T1 regions (p<0.05 or p<0.01 for 0<SO2,4T1<10 
vs. 20<SO2,4T1<40 or 40<SO2,4T1<60, respectively). After correction for low RD, 2-NBDG60/RD 
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increased slightly but significantly in hypoxic regions (p<0.01 for 0<SO2,4T1<10 vs. 
40<SO2,4T1<60). For 4T07, 2-NBDG uptake for the highest SO2,4T07 regions decreased 
compared to the lowest SO2,4T07 (p<0.01 for all 20<SO2,4T07<40 vs. 60<SO2,4T1<80). RD is 
indistinguishable between SO2,4T07 levels. After correction by RD, 2-NBDG60/RD is lowest for 
60<SO2,4T07<80 (p<0.01). Comparison between 4T1 and 4T07 shows that 2-NBDG60 is higher 
for all SO2,4T1 than all SO2,4T07 (p<0.01). On the other hand, RD for the best oxygenated 4T07 
groups (40<SO2,4T07<60 and 60<SO2,4T07<80) is greater than for all 4T1 groups (p<0.01 for all 
groups except 40<SO2,4T1<60 vs. 60<SO2,4T07<80 where p<0.06). After correction by RD, 2-
NBDG60/RD is higher for all SO2,4T1 than all SO2,4T07 (p<0.01 for all SO2,4T1 compared to all 
SO2,4T07). Number of mice per group indicated by group name in legend.  

 

The mitochondrial membrane potential probe TMRE responds to hypoxic perturbation in vivo in 
non-tumor tissue. 

We saw that TMRE signal decreased in each of four window chambers under hypoxic 
conditions compared to normoxic conditions. Representative images are shown in Figure3.6. 
Interestingly, the kinetics we have seen for TMRE are very different from previously observed 2-
NBDG kinetics. Fluorescence peaks quickly, followed by a decrease and subsequent rise to a 
plateau. We further saw that the biggest difference in signal was observed 48 minutes post-
injection. The ratio of (hypoxia fluorescence at 48 min)/(normoxia fluorescence at 48 min) was 
very consistent across mice; the ratio was 0.36 ± 0.04 (Mean ± S.D.), and the decrease from 
normoxia to hypoxia was significant (p<0.02). Full results are shown in Error! Reference 
source not found.. It should be noted that we described here normoxia imaging on day 1 and 
hypoxia imaging on day 2, but the order will be randomly scrambled across the group. The 
results indicated that our imaging of TMRE has shown promise for monitoring of changes in the 
abundance of oxidative phosphorylation in tissue. Our results were expected, as hypoxia has 
been shown to be effective for decreasing mitochondrial membrane potential, and in turn, TMRE 
uptake in HCT116 colorectral cancer [94]. 

 

Figure 3.6. Representative images of TMRE uptake in a non-tumor dorsal window chamber. 
The mouse was allowed to breathe room air (top row) or 10% O2 during imaging. TMRE uptake 
decreased significantly under hypoxic conditions. 
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Part B: Optical spectroscopy for clinical translation 

Introduction: 

Although high-resolution intra-vital microscopy provides a powerful pre-clinical tool to quantify 
the relationship between SO2 and glucose uptake in the tumor microenvironment, it is not 
readily translatable to the characterization of solid tumors.  To address this issue, we have 
developed a quantitative optical spectroscopy technique to measure the scattering, absorption 
and fluorescence of turbid media such as thick tissues [95, 96]. Specifically, we have developed 
a series of fast, scalable, Monte Carlo (MC) inverse models that model light-tissue interaction 
for the specific optical fiber-probe geometry used for measurement with the optical spectroscopy 
device. We have previously applied this technology to characterize the SO2 and [THb] of pre-
malignant and malignant tissue in both pre-clinical models [97, 98] and human subjects [99-
101]. Measurements of SO2 have been shown to be strongly associated with tissue pO2 [102]. 
We have also quantified 2-NBDG concentrations in tissue-simulating phantoms that contained 
either single or multiple fluorophores and demonstrated that the MC fluorescence model 
effectively removes the non-linear effects of absorption and scattering on the fluorescence, thus 
yielding a linear relationship between 2-NBDG fluorescence intensity and concentration [103]. 

The objective of the current study was two-fold: 1. Demonstrate the ability of a fast and non-
invasive method to simultaneously measure SO2 and glucose uptake (using 2-NBDG) in normal 
tissues and in solid tumors in pre-clinical models in vivo, and 2. Characterize differences in the 
relationship between SO2 and glucose uptake in 2 sibling murine breast cancer lines that differ 
in their metastatic potential as well as normal, non-tumor bearing tissue [104, 105]. This goal 
facilitates translation of findings from high resolution imaging of the tumor microenvironment to 
rapid, point of care technology. 

Methods: 

In vivo studies 

8 to 10 weeks old female athymic nude mice (nu/nu, NCI, Frederic, Maryland) weighing 
between 20 and 25 g were used for these studies. All animals were housed in an on-site facility 
with ad libitum access to food and water and standard 12-hour light/dark cycles. Normal mice 
with no tumors were used for the fasting and dosage experiments. Groups of five mice were 
fasted for 6 hours and injected with 6, 12, 24, or 36 mM of 2-NBDG (2 – 16 mg/ml or 8-48 mg/kg 
of body weight). For the fasting experiments, spectroscopic measurements of reflectance and 
fluorescence were performed in the morning on non-fasted mice. 2 days later, mice were fasted 
overnight for 12 hours prior to spectroscopic measurements. Blood glucose levels were 
measured by a tail-vein prick using a commercially available blood glucose meter (Freestyle), 
prior to optical measurements. Mice were not anesthetized during measurement of blood 
glucose to avoid effects of isofluorane on initial blood glucose levels. During the 12-hour fasting 
period, animals were only provided water. A separate group of 10 mice received a 
subcutaneous injection of 4T1 (N=5) or 4T07 (N=5) cells (1 million cells in 0.1 ml) in the right 
flank. Once the tumor volume was approximately 100 mm3, mice were fasted for 6 hours, 



!

anesthetized with isofluorane, and injected with a 6 mM dose of 2-NBDG. Mice in the normoxic 
group were exposed to isofluorane mixed with room air, and mice in the hypoxic group were 
exposed to isofluorane mixed with 10% Oxygen-90% Nitrogen.  

Optical measurements 

The optical spectroscopy instrument has been described previously [106]  and consists of a 450 
Watt Xenon lamp coupled to a monochromator (Jobin Yvon Horiba), a fiber-optic probe 
(designed in-house and custom built by RoMack Inc.), a spectrograph (Jobin Yvon Horiba), and 
a 2D CCD camera (Jobin Yvon Horiba). The fiber-optic probe consisted of 19 illumination fibers 
(diameter = 200 µm; NA = 0.22) surrounded by 18 collection fibers (diameter = 200 µm; NA = 
0.22). The sensing depth of the probe was estimated from tissue-like phantoms to be 
approximately 1.5 mm.  

The optical instrument was always allowed to warm up for at least 30 minutes before initiating 
measurements. The optical probe was stabilized to avoid probe bending--associated changes in 
lamp throughput and systematic errors [107]. Because changes in lamp throughput could affect 
optical measurements, reflectance and fluorescence spectra on each day were calibrated using 
a 20% reflectance standard (Spectralon, Labsphere) and a fluorescence reflectance standard 
(USF 210-010, Labsphere Inc.), respectively. Specifically, tissue reflectance spectra were 
divided, wavelength-by-wavelength, by the reflectance spectrum measured from the standard. 
The reflectance standard measurement also corrects the tissue reflectance spectra for the 
wavelength response of different system components. Fluorescence spectra were divided by 
the fluorescence intensity at 540 nm measured from the fluorescence standard. To correct the 
fluorescence spectra for wavelength response, the fluorescence spectrum from a NIST-
approved tungsten calibration lamp (Optronic Laboratories Inc., Orlando, FL) was measured 
using the optical instrument and divided by the manufacturer-provided spectrum to obtain a 
correction factor. Tissue fluorescence spectra were multiplied by this correction factor to 
calibrate the wavelength-dependent response of the monochromators, fiber bundle and PMT. 
Because 1-3 mice were imaged on a given day for a total duration of 5 hours, standard 
measurements were performed prior to optical measurements on each mouse.  

Mice were anesthetized using a mixture of isofluorane and room air (1.5% v/v) throughout the 
course of the optical measurements. Optical measurements were obtained by placing the finer-
optic probe on the skin covering the right flank of the mouse. Optical measurements on each 
mouse were acquired continuously for a period of 75 minutes.  The probe was stabilized with a 
clamp and care was taken to ensure that pressure was not applied on tissue. Reflectance 
spectra were acquired from 390 – 650 nm (acquisition time: 0.05 s) and fluorescence emission 
spectra were acquired from 510 – 620 nm (acquisition time: 5 s) using excitation at 490 nm. 
Although 2-NBDG is maximally excited at ~ 475 nm, an excitation wavelength of 490 nm was 
used to minimize fluorescence excitation of endogenous FAD. Prior to 2-NBDG injection, 
baseline reflectance and fluorescence spectra were measured from the tissue site of interest. All 
measurements for both phantom and animal studies were acquired in a dark room.  

Measurement of tissue optical properties and native fluorescence 
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A scalable inverse Monte Carlo model was used to extract tissue scattering, absorption and 
native fluorescence of 2-NBDG from in vivo optical measurements. The reflectance and 
fluorescence-based inverse Monte Carlo models have been described in detail previously [95, 
96]. Further, the fluorescence model has been validated for both single and multiple 
fluorophores in the sampled medium [103]. A flowchart describing the entire process is 
presented in Figure 3.7. Because the Monte Carlo model operates on an absolute scale and the 
tissue measurements are relative to a reflectance standard, a reference phantom with known 
optical properties is necessary to accurately scale tissue optical properties. Based on a series of 
phantom studies using the optical instrument and fiber-optic probe described here, a reference 
phantom was selected based on low errors in extracting tissue absorption and scattering. The 
inverse model assumes oxygenated hemoglobin, deoxygenated hemoglobin, and overlying rat 
skin as absorbers, and utilizes the widely used extinction coefficients documented by Scott 
Prahl to calculate absorption coefficients (units of cm-1). Tissue scattering is assumed to be 
primarily due to cells and its associated components and is calculated from scatterer size, 
density, and the refractive index of the scatterer and surrounding medium using Mie theory for 
spherical particles. The inverse model works by adaptively fitting the modeled diffuse 
reflectance to the measured tissue diffuse reflectance until the sum of squares error between 
the modeled and measured diffuse reflectance is minimized. We used the fluorescence intensity 
at 60 minutes – 2-NBDG60 to indicate glycolytic demand by the tumor. 

Figure 3.7. Monte Carlo modeling. Flowchart illustrating the working of the MC reflectance 
and fluorescence models to extract optical properties and distortion-free fluorescence from 
tissue.  

Results: 

Optical measures of SO2 are significantly lower in tumors compared with normal tissue 

Figure 3.8A shows representative reflectance spectra (normalized to 600 nm) measured from 
three different groups of mice – non-tumor bearing and 4T1 and 4T07 murine mammary tumor 
xenografts. These spectra were measured prior to tail-vein injection of a 6mM (2mg/ml) dose of 



!

2-NBDG. Open circles represent the measured reflectance and the solid lines represent the MC 
reflectance model fits to the data. Based on these model fits, the extracted absorption spectrum 
for each reflectance measurement is presented in Fig. 3.8B. The absorption levels are 
significantly higher in the 4T1 tumor compared to that in normal tissue and the 4T07 tumors. 
SO2 levels, calculated from the relative concentrations of oxygenated and deoxygenated 
hemoglobin, are significantly lower in the 4T1 and 4T07 tumors compared with normal tissue 
(Fig. 3.8C). Fig. 3.8D shows the effect of 2-NBDG injection on SO2 within tissue and tumors. A 
small but insignificant increase in SO2 was observed in normal tissue and the 4T1 tumors at 60 
minutes relative to baseline (prior to injection), which is the time point at which 2-NBDG-
fluorescence stabilizes from transient perfusion-mediated effects. A small but insignificant 
change in SO2 was observed in the 4T07 tumors. The fold-increase in SO2 was not significantly 
correlated with 2-NBDG-fluorescence at 60 minutes within normal tissue or tumors (data not 
shown; r = 0.07; p = 0.78). The oxygen consumption rates of both cell lines were calculated 
using a glycolysis stress test, and were found to be statistically similar (fig. 3.8E).  

Figure 3.8. Optical measures of SO2 are significantly lower in tumors compared with 
normal tissue. A. Representative reflectance spectra (open circles) from normal tissue (blue), 
4T1 (red) and 4T07 (green) murine mammary tumors, and MC model fits (solid line). B. 
Extracted absorption spectra for the reflectance spectra shown in 3.8A illustrate higher 
absorption in the 4T1 tumor compared with the normal and 4T07 tumor. C. Baseline 
oxygenation levels are significantly lower in 4T1 and 4T07 tumors compared with normal tissue. 
D. The injection of 2-NBDG causes an insignificant increase in SO2 in normal tissue and 4T1 
tumors. E. Oxygen consumption rates (OCR) of 4T1 and 4T07 cells are statistically similar. 
Measurements were made using a Seahorse Glycolysis stress test. Data represent n=12 cell 
samples from 3 distinct assays. Error bars represent standard error of the mean. 



!

Intrinsic tissue fluorescence corrected for absorption and scattering shows a significant increase 
in 2-NBDG60 in 4T1 tumors relative to normal tissue 

Measured 2-NBDG-fluorescence spectra at 60 minutes are shown in Fig. 3.9A. The 
fluorescence intensities from the three representative mice (normal, 4T1, and 4T07) are similar; 
however, there is a visible distortion of the fluorescence line shape measured from the 4T1 
tumor in the wavelength range corresponding to hemoglobin absorption (560-600 nm). 
Normalized versions of the same spectra illustrate the effect of distortion in better detail (Fig. 
3.9B). There are no significant differences in 2-NBDG60 between the three groups (Fig. 3.9C). 
Correction with the MC model removes the distortion due to hemoglobin from the fluorescence 
line shape, and the recovered line shape is a closer representation of the actual 2-NBDG 
spectrum (Fig. 3.9E). Corrected 2-NBDG60 is significantly higher in the 4T1 tumors compared 
with normal tissue (Fig. 3.9F). Although the median value of the 4T07 tumors was similar to that 
of the 4T1 tumors, there was no significant difference in 2-NBDG60 between the 4T07 tumors 
and the other two groups. This was primarily due to the large variance in fluorescence intensity 
in the 4T07 group in both the measured and corrected forms. Analysis of the extracellular 
acidification rate (ECAR) using glycolysis stress tests showed no significant differences 
between 4T1 and 4T07 cells (fig. 3.9G). 

Figure 3.9. Intrinsic tissue fluorescence corrected for absorption and scattering improves 
2-NBDG contrast between 4T1 tumors and normal tissue. A. Measured 2-NBDG60 from the 
4T1 and 4T07 tumors is distorted by hemoglobin absorption, and is on par with fluorescence 
from normal tissue. A normal tissue data-point and representative tumors with similar measured 
fluorescence values were selected to illustrate the effect of correction. B. Normalized spectra of 
measured 2-NBDG60 illustrate the distortion in better detail. C. Measured 2-NBDG60 is not 
significantly different between the different groups. D. Correction with the MC fluorescence 
model removes hemoglobin-induced distortions and improves contrast between normal and 
tumor. E. Corrected 2-NBDG60 spectra from normal tissue, a 4T1 tumor, and a 4T07 tumor 
shown in 3.9D, normalized to their respective maxima are presented along with a true 2-NBDG 
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fluorescence measurement, illustrating good agreement between the extracted in vivo spectral 
line shapes and native 2-NBDG. F. Corrected 2-NBDG60 is significantly higher in 4T1 tumors 
compared with normal tissue (p = 0.02). Although mean 2-NBDG60 in 4T07 tumors is higher 
compared with normal tissue, this is not statistically significant. G. The extracellular acidification 
rate (ECAR) of 4T1 and 4T07 cells, as calculated with a Seahorse Glycolysis stress test, is not 
significantly different. Data represent n=12 cell samples from 3 distinct assays. Error bars 
represent standard error of the mean.  

2-NBDG60 increases with a decrease in blood glucose levels 

Figure 3.10A presents representative kinetic profiles of 2-NBDG uptake for three different 
periods of food deprivation in mice – 0, 6, and 12 hours. All measurements were made on non-
tumor-bearing mice that were injected with a 6 mM (2 mg/ml) dose of 2-NBDG. Maximum 2-
NBDG-fluorescence is similar in all three fasting groups (0, 6, and 12 hours). 2-NBDG60 is 
significantly higher in the 6-h and 12-h fasting groups compared with the 0-h fasting group (Fig. 
3.10B; p = 0.02). However, there were no significant differences in fluorescence between the 6 
and 12-h fasting groups. In a separate cohort of mice, we determined blood glucose levels for 
different fasting durations ranging from 0 – 12 hours. Mice fasted for 6 hours showed a 
statistically significant decrease in blood glucose levels relative to baseline blood glucose levels 
(Fig. 3.10C). Fasting for 12 hours did not lead to any further decrease in blood glucose levels. 
These data illustrate that changes in 2-NBDG60 for the different fasting durations are consistent 
with blood glucose dynamics over a similar time period. 

Figure 3.10. 2-NBDG60 is sensitive to a decrease in blood glucose levels. A. 
Representative 2-NBDG kinetic profiles for 3 different fasting groups of mice after injection of a 
6 mM (2mg/ml) dose via the tail-vein. There are no significant differences in maximum 2-NBDG-
fluorescence between the different fasting groups, confirming that the delivery of 2-NBDG is 
similar across all animal groups. B. 2-NBDG60 is significantly higher in mice fasted for 6 hours 
and 12 hours compared with mice that were not fasted (p = 0.02). There are no significant 
differences between the 6 and 12-hour fasting groups. C. Blood glucose measurements were 
performed using a Freestyle Lite monitor by drawing 3 µl of blood from the tail of a separate 
cohort of mice (n = 5). Fasting for 6 hours led to a significant decrease in blood glucose levels. 
However, fasting for 12 hours did not lead to any further decrease in blood glucose levels. 
Statistical analysis was conducted using Wilcoxon rank sum tests. 
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2-NBDG60 and SO2 measurements reveal an inverse relationship between glucose uptake and 
oxygen saturation in 4T1 and 4T07 murine mammary tumors 

Figures 3.11A and 3.11B present the SO2 and 2-NBDG60 for the three tissue and tumor types – 
normal tissue, 4T1 tumor-bearing mice that were breathing room air (or 21% O2) and 4T1-tumor 
bearing mice that were breathing 10% O2 (rest nitrogen). SO2 is significantly higher in normal, 
non-tumor-bearing mice compared with all other groups. 2-NBDG60 is significantly higher in the 
4T1 tumors exposed to 21% O2 and 10% O2 compared with normal tissue. The median SO2 of 
hypoxic 4T1 tumors was lower than their normoxic counterparts, but not statistically significant 
(Wilcoxon sign rank; p = 0.43). Figures 3.11C and 3.11D shows the results of a Seahorse 
Glycolytic Stress Test in 4T1 cells. After treatment with oligomycin, which prevents respiration, 
OCR decreased significantly in 4T1 cells (p<0.01). In vivo, we observe a similar decrease in 
SO2 after hypoxia. The decrease in OCR in 4T1 cells after treatment with oligomycin was 
accompanied by a small but insignificant increase in ECAR. Figure 3.11E illustrates the 
relationship between the two parameters for all tissue types. When the 4T1 tumors were 
exposed to hypoxia, the median 2-NBDG60 increased for the hypoxic group; however, this 
increase was not statistically significant (Wilcoxon sign rank; p = 0.43). When the 4T1 tumors 
exposed to normoxia are considered along with the hypoxic group, 2-NBDG60 is inversely 
related with SO2 (r = -0.73; p = 0.01). An examination of 4T1 tumor volumes indicated a positive 
correlation between 2-NBDG60 and tumor volume (fig. 3.12F; r = 0.79; p = 0.07). 
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Figure 3.11. Optical spectroscopy reveals differences in glycolytic and vascular 
characteristics of4T1 and 4T07 murine mammary tumors. A. SO2 is significantly lower in 
4T1 (both normoxia and hypoxia) tumors compared with normal tissue. B. 2-NBDG60 is 
significantly higher in 4T1 tumors exposed to normoxia and hypoxia compared with normal 
tissue (p = 0.02 and 0.03, respectively). C. Blockade of respiration with oligomycin significantly 
reduces OCR in the 4T1 cells. D. However, there is only a small but insignificant increase in 
ECAR in response to oligomycin. Data represent n=12 cell samples from 3 distinct assays. E. 2-
NBDG60 is inversely correlated with SO2 for the 4T1 tumors that were exposed to 21% O2 and 
10% O2 (r = -0.73; p = 0.01). Non-tumor-bearing mice, and 4T1 tumor-bearing mice that were 
breathing normoxia and hypoxia are shown here. 4T1 tumor-bearing mice were exposed to 10% 
oxygen (rest nitrogen) prior to 2-NBDG injection. F. 2-NBDG uptake in the 4T1 tumors is 
positively correlated with tumor volume. Error bars indicate standard error of the mean. 

Plans for year 6: 

In year 6, we plan to complete the optimization of TMRE as a marker of mitochondrial potential 
in metastatic (4T1) and non-metastatic (67NR) murine mammary tumor xenografts with dorsal 
window chamber imaging. We will next move to simultaneous optical spectroscopy of 2-NBDG 
and TMRE in a xenograft model. Our method will then be able to repeatedly measure glucose 
uptake, vascular oxygenation, and mitochondrial membrane potential in vivo in solid tumors. 
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With our optimized method, we look to monitor tumor response to tamoxifen in parental and 
tamoxifen-resistant MCF-7 tumors in an orthotopic breast cancer model. Spectroscopy will be 
repeated over the course of eight weeks to monitor changes in metabolism during treatment. 
Many studies indicate that glycolysis changes in response to both Akt pathway activation and 
estrogen stimulation, which may both contribute to tamoxifen resistance. Consistent with 
previous findings, a study by our group showed that treatment with tamoxifen significantly 
decreased 2-NBDG uptake by ER+ (tam-sensitive) cells, but not ER- cells, which are not 
sensitive to tam. We hypothesize that our “optical toolbox” of endogenous contrast, 2-NBDG, 
and TMRE will be suitable for identifying tamoxifen-resistant tumors during treatment. 

4. KEY RESEARCH ACCOMPLISHMENTS:

AIM 1 

• The hi-resolution 49-channel instrumentation has been optimized.
o The light source was upgraded to a multi-channel LED source.
o The imaging platform has been reduced in size and weight.

• Hi-resolution raster-scanned images were acquired for approximately 60 new
lumpectomy patients; the initial 30 have been analyzed and corroborate our previous
work.

• The spectral imaging software has been upgraded to provide hi-resolution parameter
maps intra-operatively.

• The diagnostic quantitative analysis for the 49 channel patient data set has been
developed.

AIM 2 

Duke 

• Continued to enroll patients in ex vivo biopsy study which demonstrates the potential of
using HRME imaging to determine histology of samples during a core needle biopsy
procedure (n = 71 patients total). We are planning to continue enrolling patients up to n =
75 in year 6.

• Applied sparse decomposition algorithm to all images of biopsy specimens and built initial
classification model to distinguish between malignant and benign tissue.

• Currently optimizing our classification model to yield the best separation between positive
and negative biopsies.

Rice 

• We developed computerized algorithms to segment and quantitatively analyze DCIS
lesions and benign ducts observed in confocal fluorescence images.
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• Our quantitative analysis of adipocytes’ physical characteristics shows that there are
significant differences in cell morphology adjacent to neoplastic and non-neoplastic tissue
margins.

• In our analysis of confocal images to evaluate CNB specimens, we show that grayscale
confocal images have moderate agreement with histologic images on estimated invasive
tumor cellularity.

AIM 3 

• Demonstrated sensitivity of delivery-corrected glucose uptake to metabolic perturbations
• Demonstrated sensitivity of mitochondrial membrane potential probe to changes in

oxygenation
• Optimized optical spectroscopy of vascular oxygen saturation and glucose uptake in vivo

5. CONCLUSIONS:

Aim 1 

The work described herein details the performance and clinical suitability of an optimized 
version of our fiber-optic based clinical spectroscopy tool for intra-operative margin assessment. 
Optical property extraction accuracy using a single reference phantom was found to be less 
than 10% over the range of tissue optical properties typically seen in clinic and indicated by 
previous work by our lab[15, 108, 109]. The raster-scanning implementation has dramatically 
improved the spatial resolution and acquisition reproducibility relative to previous 
implementations of margin assessment tools developed by our lab. Analysis of the first set of 
patient data collected with device suggests that sampling resolution could improve the 
sensitivity and specificity relative to previous generations.  In addition to the improved 
resolution, the raster-scanning imaging platform provides precise pressure control and 
placement of the probe relative to the specimen. The control of pressure is important in the 
context of a tool that makes physical contact with the specimen: the applied pressure must not 
compress the margin as it could result in a false positive. The newly developed LED light source 
has allowed us sample the margin 8 times over (64 images per margin) due to the reduced time 
needed to toggle the light source channels. These instrumentation advancements will augment 
the development of our diagnostic algorithm which can increasingly improve the accuracy in 
determining the margin landscape, ultimately allowing for the detection of small, easily missed 
regions of disease.  

Aim 2 

Duke 
The ex vivo biopsy study demonstrates that high resolution fluorescence imaging of acriflavine 
stained tissue combined with an algorithm that leverages sparse decomposition analysis 
provides a rapid, non-destructive and automated strategy for quantitative pathology of thick 
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tissues with non-uniform background heterogeneity. During Year 6, we will finalize our 
diagnostic model to yield the optimal separation between positive and negative biopsies. This 
includes further identifying why biopsies are being incorrectly classified, and iterating on our 
model building in order to achieve optimal performance.   

Rice 

The goal of this proposal was to develop and apply imaging systems and molecular contrast 
agents which can be used in patients to 1) improve early detection and rapid assessment of 
breast cancer lesions, 2) aid in selection of targeted therapeutics, and 3) monitor the efficacy of 
these.  

We developed computerized algorithms to segment and quantitatively analyze DCIS lesions 
and benign ducts observed in confocal fluorescence images. We demonstrated that two 
parameters, median duct wall width and number of lumens, classify DCIS from benign ducts in 
confocal fluorescence images with high sensitivity (88.5%) and specificity (92%). These 
parameters could potentially be used to develop a more objective method to distinguish 
between neoplastic and non-neoplastic ducts in breast tissue specimens. Our quantitative 
analysis of adipocytes’ physical characteristics shows that there are significant differences in 
cell morphology adjacent to neoplastic and non-neoplastic tissue margins. We found that 
adipocyte area and diameter are lower when adjacent to neoplastic lesions than in tissue 
adjacent to normal collagen. These findings indicate that physical parameters of breast 
morphology could be used to rapidly assess breast lesions and to monitor disease progression 
and regression.  

In our analysis of confocal images to evaluate CNB specimens, we show that grayscale 
confocal images have moderate agreement with histologic images on estimated invasive tumor 
cellularity. We also found that confocal images of CNB specimens could be acquired within and 
average of less than 2 minutes. Our findings suggest that confocal fluorescence microscopy 
could potentially be used to assess CNB specimen adequacy in a clinical setting and to indicate 
the need for a repeat biopsy.  

Aim 3 

Clinical tools for the measurement of tumor metabolism are invaluable, but current technologies 
are often expensive or require destructive tissue preparation. We have validated a new 
technique for monitoring tissue metabolism in vivo with high-resolution optical microscopy and 
repeatable, non-invasive optical spectroscopy. A combination of glucose uptake (2-NBDG), 
mitochondrial membrane potential (TMRE), and vascular oxygenation (SO2) reported on tumor 
and non-tumor phenotype and response to perturbations in vivo. 

Our findings with high-resolution intravital microscopy show that correcting for 2-NBDG delivery 
with a correction factor “RD” helps account for experimental and physiological effects including 
blood velocity, variations in injected dose, and non-specific uptake. Delivery-corrected glucose 
uptake gave better separation between a non-metastatic mammary tumor line and a metastatic 
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mammary tumor line than glucose uptake alone. Further, the addition of a vascular information 
showed distinct relationships between delivery-corrected glucose uptake and oxygen saturation 
in the two cell lines, with the metastatic tumor line showed increased demand for glucose, even 
in the presence of abundant oxygen. With further testing on aggressive and non-aggressive 
tumor types, our imaging method shows promise as a tool for outcome prediction and therapy 
planning at the time of diagnosis. 

We have also shown that optical spectroscopy is an effective method for simultaneous 
measurement of 2-NBDG and vascular oxygenation. Optical spectroscopy of 2-NBDG showed 
an inverse correlation with blood glucose concentration, indicating sensitivity to glucose 
demand. The strategy was effective for distinguishing non-tumor tissue from aggressive, 
glycolytic tumors in vivo; tumor showed lower oxygenation and higher glucose uptake than non-
tumor. The next steps in this project are further validation of TMRE imaging and spectroscopy 
and combination of 2-NBDG and TMRE monitoring into a single, simultaneous measurement 
strategy. With our ability to measure metabolic and vascular endpoints, we hypothesize that we 
will then be able to differentiate tamoxifen resistant tumors from tamoxifen responders. Our 
future work focuses on determination of therapy response. 
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1. Nichols, B.S., A 49-Channel Wide-Field Spectral Imaging System for Quantitative Breast
Tumor Margin Assessment. PloS one, In preparation.

2. Brown, J.Q., et al., Optical Spectral Surveillance of Breast Tissue Landscapes for Detection
of Residual Disease in Breast Tumor Margins. PloS one, 2013. 8(7): p. e69906.

AIM 2: 
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1. Mueller J, Fu H, Mito J, Whitley M, Chitalia R, Dodd L, Willett R, Kirsch D, Ramanujam N. A
rapid microscopic approach toward predicting local recurrence of tumor margins in vivo.
Cancer Research, 2014. In progress.

2. Mueller J, Harmany Z, Mito K, Kennedy S, Kim Y, Dodd L, Geradts J, Kirsch D, Willett R,
Brown Q, Ramanujam N. Quantitative Segmentation of Fluorescence Microscopy Images of
Heterogeneous Tissue: Application to the Detection of Residual Disease in Tumor Margins.
PLoS one, 2013, 8(6): e66198.

3. Fu H, Mueller J, Javid M, Mito J, Kirsch D, Ramanujam N, Brown Q. Optimization of a
Widefield Structured Illumination Microscope for Non-Destructive Assessment and
Quantification of Nuclear Features in Tumor Margins of a Primary Mouse Model of Sarcoma.
PLoS one, 2013, 8(7): e68868.
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Breast Carcinoma Core Needle Biopsies. Breast Cancer Research and Treatment (Under
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Fluorescence Microscopy. Forty-Seventh Asilomar Conference on Signals, Systems, and
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Brown Q, Ramanujam N. Quantitative segmentation of fluorescence microscopy images of
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SPIE Photonics West, San Francisco, CA, February 2013.
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7. PATENTS

8. REPORTABLE OUTCOMES

1) Aim 1 - Design, fabrication and validation of hi-resolution wide-field optical spectroscopy
system and software platform

2) Aim 2 – Built a diagnostic model to classify acriflavine stained biopsies imaged with high
resolution fluorescence microscopy as either malignant or benign.

3) Aim 3 – Delivery corrected, optical imaging and spectroscopy of 2-NBDG and vascular
oxygenation
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Nothing to report 
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